Background: Conventional ultrasound (US) has been routinely used for differential diagnosis of thyroid nodules, but its discriminatory performance remains unsatisfactory. This study aimed to develop and validate a prediction nomogram model based on conventional US and contrast-enhanced ultrasound (CEUS) features for differentiating malignant from benign thyroid nodules.
Methods: A total of 815 thyroid nodules with surgical pathology results and complete conventional US and CEUS data were retrospectively collected from the First People's Hospital of Qinzhou between January 2019 and July 2023.
Background: Accurate preoperative prediction of cervical lymph node metastasis (LNM) for papillary thyroid carcinoma (PTC) patients is essential for disease staging and individualized treatment planning, which can improve prognosis and facilitate better management.
Purpose: To establish a fully automated deep learning-enabled model (FADLM) for automated tumor segmentation and cervical LNM prediction in PTC using ultrasound (US) video keyframes.
Methods: The bicentral study retrospective enrolled 518 PTC patients, who were then randomly divided into the training (Hospital 1, n = 340), internal test (Hospital 1, n = 83), and external test cohorts (Hospital 2, n = 95).
Rationale And Objectives: We aimed to compare superb microvascular imaging (SMI)-based radiomics methods, and contrast-enhanced ultrasound (CEUS)-based radiomics methods to the American College of Radiology Thyroid Imaging Reporting and Data System (ACR TI-RADS) for classifying thyroid nodules (TNs) and reducing unnecessary fine-needle aspiration biopsy (FNAB) rate.
Materials And Methods: This retrospective study enrolled a dataset of 472 pathologically confirmed TNs. Radiomics characteristics were extracted from B-mode ultrasound (BMUS), SMI, and CEUS images, respectively.
Background: American College of Radiology (ACR) Thyroid Imaging Reporting and Data System (TI-RADS, TR) 4 and 5 thyroid nodules (TNs) demonstrate much more complicated and overlapping risk characteristics than TR1-3 and have a rather wide range of malignancy possibilities (> 5%), which may cause overdiagnosis or misdiagnosis. This study was designed to establish and validate a dual-modal ultrasound (US) radiomics nomogram integrating B-mode ultrasound (BMUS) and contrast-enhanced ultrasound (CEUS) imaging to improve differential diagnostic accuracy and reduce unnecessary fine needle aspiration biopsy (FNAB) rates in TR 4-5 TNs.
Methods: A retrospective dataset of 312 pathologically confirmed TR4-5 TNs from 269 patients was collected for our study.
Zhongguo Shi Yan Xue Ye Xue Za Zhi
August 2009
This study was purposed to evaluate a method to discriminate the action loci of anticancer agents in G(2) and M phases of cell cycle. The meta-amsacrine (m-AMSA) and vinblastine (VBL), already known as G(2) and M phase arrest agent respectively, were used to induce the arrest of MOLT-4 cells at G(2) and M phases, the change of DNA content was detected by flow cytometry, the morphology of arrested cells was observed by confocal microscopy so as to find the arrest efficacy difference of 2 anticancer agents. As a result, the flow cytometric detection showed that the arrested MOLT-4 cells displayed the raise of peaks in G(2) and M phases, but flow cytometric detection alone can not discriminate the difference between them.
View Article and Find Full Text PDFZhongguo Dang Dai Er Ke Za Zhi
April 2009
Objective: To observe the short-term efficacy and safety of Shenqi mixture (SQM) combined with microwave coagulation in treating primary hepatocellular carcinoma (HCC).
Methods: Seventy-two patients with primary HCC of stage II-III, Karnofsky scoring > or = 50 scores and predicted survival period > or = 3 months were selected and randomly assigned into two groups, the treated group and the control group, 36 in each. Microwave therapy was applied to both groups by double leads, 60 W, 800 sec once a week for two weeks.