Publications by authors named "Jesse McNichol"

We introduce the Global rRNA Universal Metabarcoding Plankton database (GRUMP), which consists of 1194 samples that were collected from 2003-2020 and cover extensive latitudinal and longitudinal transects, as well as depth profiles in all major ocean basins. DNA from unfractionated (>0.2 µm) seawater samples was amplified using the 515Y/926 R universal three-domain rRNA gene primers, simultaneously quantifying the relative abundance of amplicon sequencing variants (ASVs) from bacteria, archaea, eukaryotic nuclear 18S, and eukaryotic plastid 16S.

View Article and Find Full Text PDF

Heterotrophic bacteria and archaea ("heteroprokaryotes") drive global carbon cycling, but how to quantitatively organize their functional complexity remains unclear. We generated a global-scale understanding of marine heteroprokaryotic functional biogeography by synthesizing genetic sequencing data with a mechanistic marine ecosystem model. We incorporated heteroprokaryotic diversity into the trait-based model along two axes: substrate lability and growth strategy.

View Article and Find Full Text PDF

Linking sequence-derived microbial taxa abundances to host (patho-)physiology or habitat characteristics in a reproducible and interpretable manner has remained a formidable challenge for the analysis of microbiome survey data. Here, we introduce a flexible probabilistic modeling framework, VI-MIDAS (variational inference for microbiome survey data analysis), that enables joint estimation of context-dependent drivers and broad patterns of associations of microbial taxon abundances from microbiome survey data. VI-MIDAS comprises mechanisms for direct coupling of taxon abundances with covariates and taxa-specific latent coupling, which can incorporate spatio-temporal information and taxon-taxon interactions.

View Article and Find Full Text PDF
Article Synopsis
  • Marine microbial ecologists aim to measure organismal abundance and diversity in ecosystems at a high taxonomic resolution, using various methods to capture accurate data.
  • Traditional flow cytometry estimates the number of microbial cells but lacks the ability to differentiate among many species, while amplicon sequencing offers detailed taxonomic data but often only provides relative abundances.
  • This study introduces a technique that combines genomic internal standards with amplicon sequencing, allowing for accurate absolute cell counts of marine picocyanobacteria, which aligns closely with flow cytometry results, indicating a reliable method for analyzing microbial populations in complex marine environments.
View Article and Find Full Text PDF

A novel mesophilic, hydrogen- and thiosulfate-oxidizing bacterium, strain ISO32, was isolated from diffuse-flow hydrothermal fluids from the Crab Spa vent on the East Pacific Rise. Cells of ISO32 were rods, being motile by means of a single polar flagellum. The isolate grew at a temperature range between 30 and 55 °C (optimum, 43 °C), at a pH range between 5.

View Article and Find Full Text PDF
Article Synopsis
  • This study emphasizes the importance of understanding the community composition of marine microorganisms to track global changes in the ocean.
  • The research involved re-amplifying 16S rRNA genes from DNA samples collected during an Atlantic Ocean expedition, comparing findings from different primer sets.
  • Results showed that the choice of primers significantly affects the detected community structure, revealing inconsistencies in richness patterns and highlighting the influence of sampling depth and filtering methods.
View Article and Find Full Text PDF

Marine intertidal sediments fluctuate in redox conditions and nutrient availability, and they are also known as an important sink of nitrogen mainly through denitrification, yet how denitrifying bacteria adapt to this dynamic habitat remains largely untapped. Here, we investigated novel intertidal benthic ecotypes of the model pelagic marine bacterium Ruegeria pomeroyi DSS-3 with a population genomic approach. While differing by only 1.

View Article and Find Full Text PDF

Molecular surveys of low temperature deep-sea hydrothermal vent fluids have shown that (previously ) often dominate the microbial community and that three genera, , , and , frequently coexist. In this study, we used replicated radiocarbon incubations of deep-sea hydrothermal fluids to investigate activity of each genus under three experimental conditions. To quantify genus-specific radiocarbon incorporation, we used newly designed oligonucleotide probes for , , and to quantify their activity using catalyzed-reporter deposition fluorescence hybridization (CARD-FISH) combined with fluorescence-activated cell sorting.

View Article and Find Full Text PDF

Small subunit rRNA (SSU rRNA) amplicon sequencing can quantitatively and comprehensively profile natural microbiomes, representing a critically important tool for studying diverse global ecosystems. However, results will only be accurate if PCR primers perfectly match the rRNA of all organisms present. To evaluate how well marine microorganisms across all 3 domains are detected by this method, we compared commonly used primers with >300 million rRNA gene sequences retrieved from globally distributed marine metagenomes.

View Article and Find Full Text PDF

Universal primers for SSU rRNA genes allow profiling of natural communities by simultaneously amplifying templates from Bacteria, Archaea, and Eukaryota in a single PCR reaction. Despite the potential to show relative abundance for all rRNA genes, universal primers are rarely used, due to various concerns including amplicon length variation and its effect on bioinformatic pipelines. We thus developed 16S and 18S rRNA mock communities and a bioinformatic pipeline to validate this approach.

View Article and Find Full Text PDF

Phage-host interactions likely play a major role in the composition and functioning of many microbiomes, yet remain poorly understood. Here, we employed single cell genomics to investigate phage-host interactions in a diffuse-flow, low-temperature hydrothermal vent that may be reflective of a broadly distributed biosphere in the subseafloor. We identified putative prophages in 13 of 126 sequenced single amplified genomes (SAGs), with no evidence for lytic infections, which is in stark contrast to findings in the surface ocean.

View Article and Find Full Text PDF

Chemoautotrophic bacteria belonging to the genus Sulfurimonas (class Campylobacteria) were previously identified as key players in the turnover of zero-valence sulfur, a central intermediate in the marine sulfur cycle. S. denitrificans was further shown to be able to oxidize cyclooctasulfur (S ).

View Article and Find Full Text PDF

Below the seafloor at deep-sea hot springs, mixing of geothermal fluids with seawater supports a potentially vast microbial ecosystem. Although the identity of subseafloor microorganisms is largely known, their effect on deep-ocean biogeochemical cycles cannot be predicted without quantitative measurements of their metabolic rates and growth efficiency. Here, we report on incubations of subseafloor fluids under in situ conditions that quantitatively constrain subseafloor primary productivity, biomass standing stock, and turnover time.

View Article and Find Full Text PDF

Chemoautotrophic bacteria belonging to the genus Sulfurimonas in the class Campylobacteria are widespread in many marine environments characterized by redox interfaces, yet little is known about their physiological adaptations to different environmental conditions. Here, we used liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) in a targeted metabolomics approach to study the adaptations of Sulfurimonas denitrificans to varying salt concentrations that are found in its natural habitat of tidal mudflats. Proline was identified as one of the most abundant internal metabolites and its concentration showed a strong positive correlation with ionic strength, suggesting that it acts as an important osmolyte in S.

View Article and Find Full Text PDF

To assess Soxhlet extraction as a method for quantifying fatty acids (FA) of microalgae, crude lipid, FA content from Soxhlet extracts and FA content from in situ transesterification (ISTE) were compared. In most cases, gravimetric lipid content was considerably greater (up to sevenfold) than the FA content of the crude lipid extract. FA content from Soxhlet lipid extraction and ISTE were similar in 12/18 samples, whereas in 6/18 samples, total FA content from Soxhlet extraction was less than the ISTE procedure.

View Article and Find Full Text PDF

Biofuels from photosynthetic microalgae are quickly gaining interest as a viable carbon-neutral energy source. Typically, characterization of algal feedstock involves breaking down triacylglycerols (TAG) and other intact lipids, followed by derivatization of the fatty acids to fatty acid methyl esters prior to analysis by gas chromatography (GC). However, knowledge of the intact lipid profile could offer significant advantages for discovery stage biofuel research such as the selection of an algal strain or the optimization of growth and extraction conditions.

View Article and Find Full Text PDF

This study provides a concise background to the biochemical search for the origin of life, as grounded in the field of prebiotic chemistry. It is intended to provide a good summary of competing theories and place them in a broader context, raising questions about weaknesses in any particular theory. This material is relevant for science educators at all levels, and will stimulate interest in a wide variety of students.

View Article and Find Full Text PDF