Publications by authors named "Jeroen Anton van Bokhoven"

Ethylene oxide (EO) is a crucial building block in the chemical industry, and its production via ethylene epoxidation (EPO) is a pivotal process. Silver-based catalysts are known for their high selectivity and are currently largely used in the industrial process. Extensive research over the past 20 years has assumed the oxametallacycle (OMC) as a reaction intermediate, implying that ethylene reacts with adsorbed oxygen on the surface of silver.

View Article and Find Full Text PDF

The epoxidation of ethylene stands as one of the most important industrial catalytic reactions, and silver-based catalysts show superior activity and selectivity. Oxygen is activated on the surface of silver during the reaction and exerts a substantial impact on product selectivity. Notably, the oxygen species residing in the topmost atomic layers profoundly influence the reactivity of a catalyst.

View Article and Find Full Text PDF

ConspectusMethane complete oxidation is an important reaction that is part of the general scheme used for removing pollutants contained in emissions from internal combustion engines and, more generally, combustion processes. It has also recently attracted interest as an option for the removal of atmospheric methane in the context of negative emission technologies. Methane, a powerful greenhouse gas, can be converted to carbon dioxide and water via its complete oxidation.

View Article and Find Full Text PDF

Cu-exchanged mordenite (MOR) is a promising material for partial CH oxidation. The structural diversity of Cu species within MOR makes it difficult to identify the active Cu sites and to determine their redox and kinetic properties. In this study, the Cu speciation in Cu-MOR materials with different Cu loadings has been determined using operando electron paramagnetic resonance (EPR) and operando ultraviolet-visible (UV/Vis) spectroscopy as well as in situ photoluminescence (PL) and Fourier-transform infrared (FTIR) spectroscopy.

View Article and Find Full Text PDF

UiO-66 is a versatile zirconium-based MOF, which is thermally stable up to 500 °C. In the present work, the thermal degradation of UiO-66 with a high number of defects has been studied in inert, oxidative and reductive environments. A sample of UiO-66 with a high BET surface area of 1827 m g was prepared, which contains 2.

View Article and Find Full Text PDF

Radical-mediated gas-phase reactions play an important role in the conversion of methane under non-oxidative conditions into olefins and aromatics over iron-modified silica catalysts. Herein, we use operando photoelectron photoion coincidence spectroscopy to disentangle the elusive C radical intermediates participating in the complex gas-phase reaction network. Our experiments pinpoint different C -C radical species that allow for a stepwise growth of the hydrocarbon chains.

View Article and Find Full Text PDF

The performance of functional materials is either driven or limited by nanoscopic heterogeneities distributed throughout the material's volume. To better our understanding of these materials, we need characterization tools that allow us to determine the nature and distribution of these heterogeneities in their native geometry in 3D. Here, we introduce a method based on x-ray near-edge spectroscopy, ptychographic x-ray computed nanotomography, and sparsity techniques.

View Article and Find Full Text PDF

Hydrodesulphurization, the removal of sulphur from crude oils, is an essential catalytic process in the petroleum industry safeguarding the production of clean hydrocarbons. Sulphur removal is critical for the functionality of downstream processes and vital to the elimination of environmental pollutants. The effectiveness of such an endeavour is among other factors determined by the structural arrangement of the heterogeneous catalyst.

View Article and Find Full Text PDF

Nanosized UiO-66 with an unprecedented crystallite size of 10 nm was synthesized by exploiting controlled aging of stock solutions of Zr(4+) in N,N-dimethylformamide in the presence of variable amounts of water and acetic acid prior to the addition of the ligand. The yield of the synthesis is not affected, affording high conversion of the starting reagents into the product.

View Article and Find Full Text PDF

Metal-organic frameworks are having a tremendous impact on novel strategic applications, with prospective employment in industrially relevant processes. The development of such processes is strictly dependent on the ability to generate materials with high yield efficiency and production rate. We report a versatile and highly efficient method for synthesis of metal-organic frameworks in large quantities using continuous flow processing under microwave irradiation.

View Article and Find Full Text PDF

The unique selectivity of Au/TiO2 for converting ammonium formate to CO2 in the presence of excess O2 and H2O without oxidising NH3 up to 300 °C is reported. The catalyst is highly stable and selective even after severe hydrothermal aging.

View Article and Find Full Text PDF

Structural features, synthesis, and reactivity of Zn-biphenyl metal-organic frameworks with MOF-5 topology are presented to show the chemical flexibility of such materials and to demonstrate the challenges that can be encountered and solved to avoid interpenetration. We introduce the synthesis of a Zn-biphenyl MOF with diphenylphosphino functionalization and illustrate its structural and chemical properties.

View Article and Find Full Text PDF

Crystalline porous materials are extremely important for developing catalytic systems with high scientific and industrial impact. Metal-organic frameworks (MOFs) show unique potential that still has to be fully exploited. This perspective summarizes the properties of MOFs with the aim to understand what are possible approaches to catalysis with these materials.

View Article and Find Full Text PDF

A new spectroscopic cell has been designed for studying model catalysts using in situ or operando X-ray absorption spectroscopy. The setup allows gas treatment and can be used between 100 and 870 K. Pressures from 10(-3) Pa up to 300 kPa can be applied.

View Article and Find Full Text PDF