Publications by authors named "Jay Cao"

The flow of cerebrospinal fluid (CSF) is important for conveying brain-derived macromolecules for signaling and enabling them to be drained from the brain parenchyma. The glymphatic route is the best-characterized means of this CSF flow; however, it does not permit the movement of larger macromolecules. Here, we identify in mice an alternative route whereby intra-CSF-injected macromolecules can traverse from periarterial to perivenous spaces, with transfer occurring at sites of overlap between leptomeningeal perivascular (arteriovenous) spaces dispersed across the surface of the brain's leptomeninges.

View Article and Find Full Text PDF

Meningeal lymphatics serve as an outlet for cerebrospinal fluid, and their dysfunction is associated with various neurodegenerative conditions. Previous studies have demonstrated that dysfunctional meningeal lymphatics evoke behavioral changes, but the neural mechanisms underlying these changes have remained elusive. Here, we show that prolonged impairment of meningeal lymphatics alters the balance of cortical excitatory and inhibitory synaptic inputs, accompanied by deficits in memory tasks.

View Article and Find Full Text PDF

Background: Pulses, a healthy diet component, have many bone-beneficial nutrients.

Objectives: This study investigated whether incorporation of dried pulses to a high-fat diet improves bone metabolism in obese mice.

Methods: Male C57BL/6 mice at 4-wk-old were randomly assigned to 4 diet groups (n = 22-24/group) for 12 wk: a normal-fat (NF; 4.

View Article and Find Full Text PDF

An environmentally compatible and less costly (greener) analytical method for the digestion of bone meal samples using microwave-assisted dilute nitric acid (HNO) was developed and optimized. The method, employing a mixture of 1 mL concentrated HNO and 4 mL of deionized water, offered a comparable performance to the conventional method using 5 mL of concentrated HNO. The accuracy of the method was validated by using certified reference material NIST 1486 (Bone Meal); percentage recoveries were within ±15% for all eight certified elements.

View Article and Find Full Text PDF

Despite the presence of strategically positioned anatomical barriers designed to protect the central nervous system (CNS), it is not entirely isolated from the immune system. In fact, it remains physically connected to, and can be influenced by, the peripheral immune system. How the CNS retains such responsiveness while maintaining an immunologically unique status remains an outstanding question.

View Article and Find Full Text PDF

We previously reported an ability of low-intensity vibration (LIV) to improve selected biomarkers of bone turnover and gene expression and reduce osteoclastogenesis but lacking of evident bone accrual. In this study, we demonstrate that a prolonged course of LIV that initiated at 2 weeks post-injury and continued for 8 weeks can protect against bone loss after SCI in rats. LIV stimulates bone formation and improves osteoblast differentiation potential of bone marrow stromal stem cells while inhibiting osteoclast differentiation potential of marrow hematopoietic progenitors to reduce bone resorption.

View Article and Find Full Text PDF

Microglia are thought to originate exclusively from primitive macrophage progenitors in the yolk sac (YS) and to persist throughout life without much contribution from definitive hematopoiesis. Here, using lineage tracing, pharmacological manipulation, and RNA-sequencing, we elucidated the presence and characteristics of monocyte-derived macrophages (MDMs) in the brain parenchyma at baseline and during microglia repopulation, and defined the core transcriptional signatures of brain-engrafted MDMs. Lineage tracing mouse models revealed that MDMs transiently express CD206 during brain engraftment as CD206 microglia precursors in the YS.

View Article and Find Full Text PDF

Background/aim: This study examined the effects of tocotrienols (TT) in conjunction with statin on glucose homeostasis, bone microstructure, gut microbiome, and systemic and liver inflammatory markers in obese C57BL/6J mice.

Materials And Methods: Forty male C57BL/6J mice were fed a high-fat diet (HFD) and assigned into four groups in a 2 (no statin vs. 120 mg statin/kg diet)×2 (no TT vs.

View Article and Find Full Text PDF

Obesity induced by a high-fat (HF) diet increases bone resorption and/or decreases bone formation, resulting in reduced bone mass and strength in various animal models. Studies showed that Ca intake is a modifiable factor for osteoporosis and obesity. This study investigated whether Ca deficiency affects bone structure and adiposity in ovariectomized (OVX) rats fed a HF diet.

View Article and Find Full Text PDF

Rapid and extensive sublesional bone loss after spinal cord injury (SCI) is a difficult medical problem that has been refractory to available interventions except the antiresorptive agent denosumab (DMAB). While DMAB has shown some efficacy in inhibiting bone loss, its concurrent inhibition of bone formation limits its use. Sialic acid-binding immunoglobulin-like lectin (Siglec)-15 is expressed on the cell surface of mature osteoclasts.

View Article and Find Full Text PDF

Circadian clock genes are expressed in bone and biomarkers of bone resorption and formation exhibit diurnal patterns in animals and humans. Disruption of the diurnal rhythms may affect the balance of bone turnover and compromise the beneficial effects of exercise on bone. This study investigated whether the time of day of exercise alters bone metabolism in a rodent model.

View Article and Find Full Text PDF

We show how reinforcement learning can be used in conjunction with quantile regression to develop a hedging strategy for a trader responsible for derivatives that arrive stochastically and depend on a single underlying asset. We assume that the trader makes the portfolio delta-neutral at the end of each day by taking a position in the underlying asset. We focus on how trades in options can be used to manage gamma and vega.

View Article and Find Full Text PDF

Previously, we demonstrated that the administration of either geranylgeraniol (GGOH) or green tea polyphenols (GTP) improved bone health. This study examined the combined effects of GGOH and GTP on glucose homeostasis in addition to bone remodeling in obese mice. We hypothesized that GGOH and GTP would have an additive or synergistic effect on improving glucose homeostasis and bone remodeling possibly in part via suppression of proinflammatory cytokines.

View Article and Find Full Text PDF
Article Synopsis
  • Recent research highlights follicle-stimulating hormone (FSH) as a target for treating diseases like osteoporosis, obesity, and Alzheimer's, with findings showing that blocking FSH can prevent various health issues in mice.
  • The development of a humanized FSH-blocking antibody called MS-Hu6 has shown promise in preventing osteoporosis in mice and has safe initial testing in monkeys, demonstrating effective localization to bone and bone marrow.
  • MS-Hu6 has been optimized for stability and safety, showing no immunogenic responses in human cell cultures, making it ready for potential future human clinical trials.
View Article and Find Full Text PDF

Background: Controlled intervention trials are needed to confirm a positive association from epidemiological studies between vegetable consumption and bone health.

Objective: We investigated whether providing vegetables at the Dietary Guidelines for Americans (DGA) recommended amount affects excretion of acid and calcium in urine and bone turnover markers in serum in adults with low vegetable intake.

Methods: In total, 102 adults (19 males and 83 females, age 18-65 y, BMI ≥25 kg/m2) consuming ≤1 serving of vegetables (128 g raw leafy or 64 g cooked vegetables) per d were recruited in a 2-arm, parallel, randomized, controlled, and community-based 8-wk feeding intervention trial.

View Article and Find Full Text PDF

Geranylgeraniol (GGOH) is found in edible oils such as olive, linseed, and sunflower oils, which have favorable metabolic effects. However, it is unknown whether these physiological benefits are mediated through the gut microbiome. Thus, the purpose of this study was to test the hypothesis that GGOH supplementation would improve glucose homeostasis and benefit the bone microstructure in obese mice through suppression of inflammation and modification of gut microbiota composition.

View Article and Find Full Text PDF

Background: Bone marrow osteoblasts and adipocytes are derived from a common mesenchymal stem cell and have a reciprocal relationship. Peroxisome proliferator-activated receptor gamma (PPARγ), a regulator for adipocyte differentiation, may be a potential target for reducing obesity and increasing bone mass.

Objectives: This study tested the hypothesis that bone-specific Pparg conditional knockout (cKO), via deletion of Pparg from bone marrow stromal cells (BMSC) using Osterix 1 (Osx1)-Cre, would prevent high-fat (HF) diet-induced bone deterioration in mice.

View Article and Find Full Text PDF

Obesity increases the risk for pathological conditions such as bone loss. On the other hand, physical exercise reduces body adiposity. To test the hypothesis that physical activity improves bone quality, we evaluated voluntary running of defined distances on trabecular and cortical microstructure in mice fed a high-fat diet (HFD).

View Article and Find Full Text PDF

Background: Beta amyloid (Aβ) peptide containing plaque aggregations in the brain are a hallmark of Alzheimer's Disease (AD). However, Aβ is produced by cell types outside of the brain suggesting that the peptide may serve a broad physiologic purpose.

Objective: Based upon our prior work documenting expression of amyloid β precursor protein (APP) in intestinal epithelium we hypothesized that salivary epithelium might also express APP and be a source of Aβ.

View Article and Find Full Text PDF

Spinal cord injury (SCI) results in marked atrophy of sublesional skeletal muscle and substantial loss of bone. In this study, the effects of prolonged electrical stimulation (ES) and/or testosterone enanthate (TE) on muscle mass and bone formation in a rat model of SCI were tested. Compared to sham-transected animals, a significant reduction of the mass of soleus, plantaris and extensor digitorum longus (EDL) muscles was observed in animals 6 weeks post-SCI.

View Article and Find Full Text PDF

The role of the gut microbiome in bone health has received significant attention in the past decade. We investigated the effects of green tea polyphenols (GTP) and annatto-extracted tocotrienols (AT) on bone properties and gut microbiome in obese mice. Male mice were assigned to a two (no AT vs.

View Article and Find Full Text PDF

Background: Linoleic acid (LA; 18:2n-6) has been considered to promote low-grade chronic inflammation and adiposity. Studies show adiposity and inflammation are inversely associated with bone mass.

Objectives: This study tested the hypothesis that decreasing the dietary ratio of LA to α-linolenic acid (ALA, 18:3n-3), while keeping ALA constant, mitigates high-fat diet (HF)-induced adiposity and bone loss.

View Article and Find Full Text PDF

Bone loss in aging is linked with chronic low-grade inflammation and the accumulation of marrowfat in animals and humans. Peroxisome proliferator-activated receptor gamma (PPARγ), an adipogenic regulator, plays key roles in these biological processes. However, studies of the roles of PPARγ in age-related bone loss and inflammation are lacking.

View Article and Find Full Text PDF