The Fusarium fujikuroi fungus, known as a biotechnological source of gibberellins, has a complex secondary metabolism that responds to various environmental signals, including the availability of light and nitrogen. White collar complex proteins, consisting of the flavoprotein WC1 and its partner WC2, are widespread in fungi where they play a central role in the regulation of numerous genes in response to light. Fusarium fungi possess one copy of each WC gene, named wcoA and wcoB in F.
View Article and Find Full Text PDFSmall RNAS (sRNAs) participate in regulatory RNA interference (RNAi) mechanisms in a wide range of eukaryotic organisms, including fungi. The fungus , a model for the study of secondary metabolism, contains a complete set of genes for RNAi pathways. We have analyzed by high-throughput sequencing the content of sRNAs in total RNA samples of grown in synthetic medium in the dark or after 1 h of illumination, using libraries below 150 nt, covering sRNAs and their precursors.
View Article and Find Full Text PDFThe phytopathogenic fungus has a rich secondary metabolism which includes the synthesis of very different metabolites in response to diverse environmental cues, such as light or nitrogen. Here, we focused our attention on fusarins, a class of mycotoxins whose synthesis is downregulated by nitrogen starvation. Previous data showed that mutants of genes involved in carotenoid regulation (, encoding a RING finger protein repressor), light detection (, White Collar photoreceptor), and cAMP signaling (AcyA, adenylate cyclase) affect the synthesis of different metabolites.
View Article and Find Full Text PDFVarious species of ascomycete fungi synthesize the carboxylic carotenoid neurosporaxanthin. The unique chemical structure of this xanthophyll reveals that: (1) Its carboxylic end and shorter length increase the polarity of neurosporaxanthin in comparison to other carotenoids, and (2) it contains an unsubstituted β-ionone ring, conferring the potential to form vitamin A. Previously, neurosporaxanthin production was optimized in Fusarium fujikuroi, which allowed us to characterize its antioxidant properties in in vitro assays.
View Article and Find Full Text PDFIn the fungus , carotenoid production is up-regulated by light and down-regulated by the CarS RING finger protein, which modulates the mRNA levels of carotenoid pathway genes ( genes). To identify new potential regulators of genes, we used a biotin-mediated pull-down procedure to detect proteins capable of binding to their promoters. We focused our attention on one of the proteins found in the screening, belonging to the High-Mobility Group (HMG) family that was named HmbC.
View Article and Find Full Text PDFFiltration has emerged as a critical technology to reduce waterborne diseases caused by poor water quality. Filtration technology presents key challenges, such as membrane selectivity, permeability and biofouling. Nanomaterials can offer solutions to these challenges by varying the membranes' mechanical and bactericidal properties.
View Article and Find Full Text PDFLight is an important modulating signal in fungi. species stand out as research models for their phytopathogenic activity and their complex secondary metabolism. This includes the synthesis of carotenoids, whose induction by light is their best known photoregulated process.
View Article and Find Full Text PDFFront Bioeng Biotechnol
October 2022
a model organism for secondary metabolism in fungi, produces carotenoids, terpenoid pigments with antioxidant activity. Previous results indicate that carotenoid synthesis in is stimulated by light or by different stress conditions and downregulated by a RING finger protein encoded by gene. Here, we have analyzed the effects of three stressors, nitrogen scarcity, heat shock, and oxidative stress.
View Article and Find Full Text PDFCarotenoid biosynthesis in the fungus is regulated by environmental factors, with light being the main stimulating signal. The CarS RING-finger protein plays an important role in the downregulation of structural genes of the carotenoid pathway. A recent transcriptomic analysis on the effect of mutation identified a gene for a long non-coding RNA (lncRNA) upstream of , called , the deletion of which results in increased mRNA levels and lack of carotenoid production.
View Article and Find Full Text PDFThe proteins of the White Collar 1 family (WC) constitute a major class of flavin photoreceptors, widely distributed in fungi, that work in cooperation with a WC 2 protein forming a regulatory complex. The WC complex was investigated in great detail in , a model fungus in photobiology studies, where it controls all its major photoresponses. The fungus , a model system in the production of secondary metabolites, contains a single WC-1 gene called .
View Article and Find Full Text PDFCarotenoid biosynthesis is a frequent trait in fungi. In the ascomycete , the synthesis of the carboxylic xanthophyll neurosporaxanthin (NX) is stimulated by light. However, the mutants of the gene, encoding a protein of the RING finger family, accumulate large NX amounts regardless of illumination, indicating the role of CarS as a negative regulator.
View Article and Find Full Text PDFNeurosporaxanthin (NX) is a carboxylic carotenoid produced by some filamentous fungi, including species of the genera and . NX biosynthetic genes and their regulation have been thoroughly investigated in , an industrial fungus used for gibberellin production. In this species, carotenoid-overproducing mutants, affected in the regulatory gene , exhibit an upregulated expression of the NX pathway.
View Article and Find Full Text PDFOsmotic stress induced by high solute concentration can prevent fungal metabolism and growth due to alterations in properties of the cytosol, changes in turgor, and the energy required to synthesize and retain compatible solutes. We used germination to quantify tolerance/sensitivity to the osmolyte KCl (0.1-4.
View Article and Find Full Text PDFThe fungi Fusarium oxysporum and Fusarium fujikuroi produce carotenoids, lipophilic terpenoid pigments of biotechnological interest, with xanthophyll neurosporaxanthin as the main end product. Their carotenoid biosynthesis is activated by light and negatively regulated by the RING-finger protein CarS. Global transcriptomic analysis identified in both species a putative 1-kb lncRNA that we call carP, referred to as Fo-carP and Ff-carP in each species, upstream to the gene carS and transcribed from the same DNA strand.
View Article and Find Full Text PDFCarotenoids are widespread pigments in photosynthetic species, but they are also found in nonphotosynthetic microorganisms, such as bacteria and fungi. The amenability of fungi to genetic studies have made some fungal species advantageous models in the study of the genetics and biochemistry of carotenoid biosynthesis, while others have been used for biotechnological carotenoid production. The availability of molecular techniques that allow modulating the expression of target genes is a powerful tool in the manipulation of carotenoid synthesis.
View Article and Find Full Text PDFBackground: The orange pigmentation of the agar cultures of many Fusarium species is due to the production of carotenoids, terpenoid pigments whose synthesis is stimulated by light. The genes of the carotenoid pathway and their regulation have been investigated in detail in Fusarium fujikuroi. In this and other Fusarium species, such as F.
View Article and Find Full Text PDFThe ascomycetous fungi Fusarium fujikuroi and Neurospora crassa are widely used as research models in the study of secondary metabolism and photobiology, respectively. Both fungi exhibit a similar carotenoid pathway, for which all the genes and enzymes have been identified. Under standard laboratory conditions, either F.
View Article and Find Full Text PDFCarotenoids are lipophilic isoprenoid compounds synthesized by all photosynthetic organisms and some non-photosynthetic prokaryotes and fungi. With some notable exceptions, animals (including humans) do not produce carotenoids de novo but take them in their diets. In photosynthetic systems carotenoids are essential for photoprotection against excess light and contribute to light harvesting, but perhaps they are best known for their properties as natural pigments in the yellow to red range.
View Article and Find Full Text PDFJ Fungi (Basel)
July 2017
Many fungi of the genus stand out for the complexity of their secondary metabolism. Individual species may differ in their metabolic capacities, but they usually share the ability to synthesize carotenoids, a family of hydrophobic terpenoid pigments widely distributed in nature. Early studies on carotenoid biosynthesis in have been recently extended in and , well-known biotechnological and phytopathogenic models, respectively.
View Article and Find Full Text PDFStimulation by light of carotenoid biosynthesis in the mycelia of the fungus Neurospora crassa starts with transient transcriptional induction of the structural genes of the pathway triggered by the White Collar photoreceptor complex. Most studies on this process were carried out under standard growth conditions, but photoinduced carotenoid accumulation is more efficient if the fungus is incubated at low temperatures, from 6 to 12 °C. We have investigated the transcriptional photoresponse at 8 °C of the genes for proteins that participate in the carotenoid pathway.
View Article and Find Full Text PDFIn seed plants, strigolactones (SLs) regulate architecture and induce mycorrhizal symbiosis in response to environmental cues. SLs are formed by combined activity of the carotenoid cleavage dioxygenases (CCDs) 7 and 8 from 9-cis-β-carotene, leading to carlactone that is converted by cytochromes P450 (clade 711; MAX1 in Arabidopsis) into various SLs. As Physcomitrella patens possesses CCD7 and CCD8 homologs but lacks MAX1, we investigated if PpCCD7 together with PpCCD8 form carlactone and how deletion of these enzymes influences growth and interactions with the environment.
View Article and Find Full Text PDFApocarotenoids are carotenoid-derived compounds widespread in all major taxonomic groups, where they play important roles in different physiological processes. In addition, apocarotenoids include compounds with high economic value in food and cosmetics industries. Apocarotenoid biosynthesis starts with the action of carotenoid cleavage dioxygenases (CCDs), a family of non-heme iron enzymes that catalyze the oxidative cleavage of carbon-carbon double bonds in carotenoid backbones through a similar molecular mechanism, generating aldehyde or ketone groups in the cleaving ends.
View Article and Find Full Text PDFPlants and fungi use light and other signals to regulate development, growth, and metabolism. The fruiting bodies of the fungus Phycomyces blakesleeanus are single cells that react to environmental cues, including light, but the mechanisms are largely unknown [1]. The related fungus Mucor circinelloides is an opportunistic human pathogen that changes its mode of growth upon receipt of signals from the environment to facilitate pathogenesis [2].
View Article and Find Full Text PDFThe combination of chemotherapy and photodynamic therapy has emerged as a promising strategy for cancer therapy due to its synergistic effects. In this work, PEGylated silver nanoparticles decorated with graphene quantum dots (Ag-GQDs) were tested as a platform to deliver a chemotherapy drug and a photosensitizer, simultaneously, in chemo-photodynamic therapy against HeLa and DU145 cancer cells in vitro. Ag-GQDs have displayed high efficiency in delivering doxorubicin as a model chemotherapy drug to both cancer cells.
View Article and Find Full Text PDF