Publications by authors named "Jason D Salter"

Sangivamycin (S) is an adenosine (A) nucleoside analog with low nanomolar antiviral activity against SARS-CoV-2 in vitro. Previously, low nanomolar antiviral efficacy was revealed when tested against multiple viral variants in several cell types. SARS-CoV-2 RNA isolated from live virus infected cells and the virions released from these cells was analyzed by mass spectrometry (MS) for S incorporation.

View Article and Find Full Text PDF

Filoviruses, such as Ebola virus and Marburg virus, are of significant human health concern. From 2013 to 2016, Ebola virus caused 11,323 fatalities in Western Africa. Since 2018, two Ebola virus disease outbreaks in the Democratic Republic of the Congo resulted in 2354 fatalities.

View Article and Find Full Text PDF

The DNA mutagenic enzyme known as APOBEC3G (A3G) plays a critical role in innate immunity to Human Immunodeficiency Virus-1 (HIV-1 ). A3G is a zinc-dependent enzyme that mutates select deoxycytidines (dC) to deoxyuridine (dU) through deamination within nascent single stranded DNA (ssDNA) during HIV reverse transcription. This activity requires that the enzyme be delivered to viral replication complexes by redistributing from the cytoplasm of infected cells to budding virions through what appears to be an RNA-dependent process.

View Article and Find Full Text PDF

The 11-member APOBEC (apolipoprotein B mRNA editing catalytic polypeptide-like) family of zinc-dependent cytidine deaminases bind to RNA and single-stranded DNA (ssDNA) and, in specific contexts, modify select (deoxy)cytidines to (deoxy)uridines. In this review, we describe advances made through high-resolution co-crystal structures of APOBECs bound to mono- or oligonucleotides that reveal potential substrate-specific binding sites at the active site and non-sequence-specific nucleic acid binding sites distal to the active site. We also discuss the effect of APOBEC oligomerization on functionality.

View Article and Find Full Text PDF

The infectivity of HIV depends on overcoming APOBEC3 (A3) innate immunity, predominantly through the expression of the viral protein Vif, which induces A3 degradation in the proteasome. Disruption of the functional interactions of Vif enables A3 mutagenesis of the HIV genome during viral replication, which can result in a broadly neutralizing antiviral effect. Vif function requires self-association along with interactions with A3 proteins, protein chaperones, and factors of the ubiquitination machinery and these are described here as a potential platform for novel antiviral drug discovery.

View Article and Find Full Text PDF

Camptothecin (CPT) is a natural product discovered to be active against various cancers through its ability to inhibit Topoisomerase I (TOP1). CPT analogs also have anti-HIV-1 (HIV) activity that was previously shown to be independent of TOP1 inhibition. We show that a cancer inactive CPT analog (O2-16) inhibits HIV infection by disrupting multimerization of the HIV protein Vif.

View Article and Find Full Text PDF

The APOBEC (apolipoprotein B mRNA editing catalytic polypeptide-like) family of proteins have diverse and important functions in human health and disease. These proteins have an intrinsic ability to bind to both RNA and single-stranded (ss) DNA. Both function and tissue-specific expression varies widely for each APOBEC protein.

View Article and Find Full Text PDF

There are eleven members in the human APOBEC family of proteins that are evolutionarily related through their zinc-dependent cytidine deaminase domains. The human APOBEC gene clusters arose on chromosome 6 and 22 through gene duplication and divergence to where current day APOBEC proteins are functionally diverse and broadly expressed in tissues. APOBEC serve enzymatic and non enzymatic functions in cells.

View Article and Find Full Text PDF

APOBEC3G (A3G) DNA deaminase activity requires a holoenzyme complex whose assembly on nascent viral reverse transcripts initiates with A3G dimers binding to ssDNA followed by formation of higher-order A3G homo oligomers. Catalytic activity is inhibited when A3G binds to RNA. Our prior studies suggested that RNA inhibited A3G binding to ssDNA.

View Article and Find Full Text PDF

HIV-1 viral infectivity factor (Vif) is a viral accessory protein that is required for HIV-1 infection due largely to its role in recruiting antiretroviral factors of the APOBEC3 (apolipoprotein B editing catalytic subunit-like 3) family to an E3 ubiquitin ligase complex for polyubiquitylation and proteasomal degradation. The crystal structure of the (near) full-length Vif protein in complex with Elongin (Elo)B/C, core-binding factor (CBF)β and Cullin (Cul)5 revealed that Vif has a novel structural fold. In our opinion the structural data revealed not only the protein-protein interaction sites that determine Vif stability and interaction with cellular proteins, but also motifs driving Vif homodimerization, which are essential in Vif functionality and HIV-1 infection.

View Article and Find Full Text PDF

Cytidine deaminases have important roles in the regulation of nucleoside/deoxynucleoside pools for DNA and RNA synthesis. The APOBEC family of cytidine deaminases (named after the first member of the family that was described, Apolipoprotein B mRNA Editing Catalytic Subunit 1, also known as APOBEC1 or A1) is a fascinating group of mutagenic proteins that use RNA and single-stranded DNA (ssDNA) as substrates for their cytidine or deoxycytidine deaminase activities. APOBEC proteins and base-modification nucleic acid editing have been the subject of numerous publications, reviews, and speculation.

View Article and Find Full Text PDF

HIV-1 Vif masquerades as a receptor for a cellular E3 ligase harboring Elongin B, Elongin C, and Cullin 5 (EloB/C/Cul5) proteins that facilitate degradation of the antiretroviral factor APOBEC3G (A3G). This Vif-mediated activity requires human core-binding factor β (CBFβ) in contrast to cellular substrate receptors. We observed calorimetrically that Cul5 binds tighter to full-length Vif((1-192))/EloB/C/CBFβ (K(d) = 5 ± 2 nM) than to Vif((95-192))/EloB/C (K(d) = 327 ± 40 nM), which cannot bind CBFβ.

View Article and Find Full Text PDF

The innate antiviral factor APOBEC3G (A3G) possesses RNA binding activity and deaminates HIV-1 DNA. High-molecular mass forms of A3G can be isolated from a variety of cell types but exhibit limited deaminase activity relative to low-molecular mass species prepared under RNA-depleted conditions. To investigate the fundamental oligomeric state and shape of A3G, we conducted sedimentation velocity analyses of the pure enzyme under RNA-deficient conditions.

View Article and Find Full Text PDF

Human APOBEC3G (hA3G) is a cytidine deaminase active on HIV single-stranded DNA. Small angle x-ray scattering and molecular envelope restorations predicted a C-terminal dimeric model for RNA-depleted hA3G in solution. Each subunit was elongated, suggesting that individual domains of hA3G are solvent-exposed and therefore may interact with other macromolecules even as isolated substructures.

View Article and Find Full Text PDF

The hairpin ribozyme requires functional groups from Ade38 to achieve efficient bond cleavage or ligation. To identify molecular features that contribute to catalysis, structures of position 38 base variants 2,6-diaminopurine (DAP), 2-aminopurine (AP), cytosine (Cyt), and guanine (Gua) were determined between 2.2 and 2.

View Article and Find Full Text PDF

Human APOBEC3G (hA3G) is a cytidine deaminase that restricts human immunodeficiency virus (HIV)-1 infection in a vif (the virion infectivity factor from HIV)-dependent manner. hA3G from HIV-permissive activated CD4+ T-cells exists as an inactive, high molecular mass (HMM) complex that can be transformed in vitro into an active, low molecular mass (LMM) variant comparable with that of HIV-non-permissive CD4+ T-cells. Here we present low resolution structures of hA3G in HMM and LMM forms determined by small angle x-ray scattering and advanced shape reconstruction methods.

View Article and Find Full Text PDF

Mitochondria are proposed to play an important role in hypoxic cell signaling. One currently accepted signaling paradigm is that the mitochondrial generation of reactive oxygen species (ROS) increases in hypoxia. This is paradoxical, because oxygen is a substrate for ROS generation.

View Article and Find Full Text PDF

The literature suggests that the physiological functions for which mitochondria sequester Ca(2+) are (1). to stimulate and control the rate of oxidative phosphorylation, (2). to induce the mitochondrial permeability transition (MPT) and perhaps apoptotic cell death, and (3).

View Article and Find Full Text PDF

The mechanism of cytochrome c release from mitochondria in apoptosis remains obscure, although it is known to be regulated by bcl-2 family proteins. Here we describe a set of novel apoptotic phenomena--stimulation of the mitochondrial potassium uptake preceding cytochrome c release and regulation of such potassium uptake by bcl-2 family proteins. As a result of increased potassium uptake, mitochondria undergo moderate swelling sufficient to release cytochrome c.

View Article and Find Full Text PDF