The recent acceleration of commercial, private and multi-national spaceflight has created an unprecedented level of activity in low Earth orbit, concomitant with the largest-ever number of crewed missions entering space and preparations for exploration-class (lasting longer than one year) missions. Such rapid advancement into space from many new companies, countries and space-related entities has enabled a 'second space age'. This era is also poised to leverage, for the first time, modern tools and methods of molecular biology and precision medicine, thus enabling precision aerospace medicine for the crews.
View Article and Find Full Text PDFEvidence from the International Space Station suggests microbial populations are rapidly adapting to the spacecraft environment; however, the mechanism of this adaptation is not understood. Bacteriophages are prolific mediators of bacterial adaptation on Earth. Here we survey 245 genomes sequenced from bacterial strains isolated on the International Space Station for dormant (lysogenic) bacteriophages.
View Article and Find Full Text PDFMicroorganisms follow us everywhere, and they will be essential to sustaining long-term human space exploration through applications such as vitamin synthesis, biomining, and more. Establishing a sustainable presence in space therefore requires that we better understand how stress due to the altered physical conditions of spaceflight affects our companion organisms. In microgravity environments such as orbital space stations, microorganisms likely experience the change in gravity primarily through changes in fluid mixing processes.
View Article and Find Full Text PDFCharacterizing photosynthetic productivity is necessary to understand the ecological contributions and biotechnology potential of plants, algae, and cyanobacteria. Light capture efficiency and photophysiology have long been characterized by measurements of chlorophyll fluorescence dynamics. However, these investigations typically do not consider the metabolic network downstream of light harvesting.
View Article and Find Full Text PDFCombatting Clostridioides difficile infections, a dominant cause of hospital-associated infections with incidence and resulting deaths increasing worldwide, is complicated by the frequent emergence of new virulent strains. Here, we employ whole-genome sequencing, high-throughput phenotypic screenings, and genome-scale models of metabolism to evaluate the genetic diversity of 451 strains of C. difficile.
View Article and Find Full Text PDFWe have isolated a chlorophyll--containing cyanobacterium from the intertidal field site at Moss Beach, on the coast of Central California, USA, where Manning and Strain (1943) originally discovered this far-red chlorophyll. Here, we present the cyanobacterium's environmental description, culturing procedure, pigment composition, ultrastructure, and full genome sequence. Among cultures of far-red cyanobacteria obtained from red algae from the same site, this strain was an epiphyte on a brown macroalgae.
View Article and Find Full Text PDFFront Microbiol
November 2020
Advances in nanopore-based sequencing techniques have enabled rapid characterization of genomes and transcriptomes. An emerging application of this sequencing technology is point-of-care characterization of pathogenic bacteria. However, genome assessments alone are unable to provide a complete understanding of the pathogenic phenotype.
View Article and Find Full Text PDFDiatoms outcompete other phytoplankton for nitrate, yet little is known about the mechanisms underpinning this ability. Genomes and genome-enabled studies have shown that diatoms possess unique features of nitrogen metabolism however, the implications for nutrient utilization and growth are poorly understood. Using a combination of transcriptomics, proteomics, metabolomics, fluxomics, and flux balance analysis to examine short-term shifts in nitrogen utilization in the model pennate diatom in Phaeodactylum tricornutum, we obtained a systems-level understanding of assimilation and intracellular distribution of nitrogen.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
July 2019
Catalysis using iron-sulfur clusters and transition metals can be traced back to the last universal common ancestor. The damage to metalloproteins caused by reactive oxygen species (ROS) can prevent cell growth and survival when unmanaged, thus eliciting an essential stress response that is universal and fundamental in biology. Here we develop a computable multiscale description of the ROS stress response in , called OxidizeME.
View Article and Find Full Text PDFPhotoacclimation consists of short- and long-term strategies used by photosynthetic organisms to adapt to dynamic light environments. Observable photophysiology changes resulting from these strategies have been used in coarse-grained models to predict light-dependent growth and photosynthetic rates. However, the contribution of the broader metabolic network, relevant to species-specific strategies and fitness, is not accounted for in these simple models.
View Article and Find Full Text PDFThere is great interest in engineering photoautotrophic metabolism to generate bioproducts of societal importance. Despite the success in employing genome-scale modeling coupled with flux balance analysis to engineer heterotrophic metabolism, the lack of proper constraints necessary to generate biologically realistic predictions has hindered broad application of this methodology to phototrophic metabolism. Here we describe a methodology for constraining genome-scale models of photoautotrophy in the cyanobacteria Synechococcus elongatus PCC 7942.
View Article and Find Full Text PDFThe temperature dependence of biological processes has been studied at the levels of individual biochemical reactions and organism physiology ( basal metabolic rates) but has not been examined at the metabolic network level. Here, we used a systems biology approach to characterize the temperature dependence of the human red blood cell (RBC) metabolic network between 4 and 37 °C through absolutely quantified exo- and endometabolomics data. We used an Arrhenius-type model () to describe how the rate of a biochemical process changes with every 10 °C change in temperature.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2016
The model cyanobacterium, Synechococcus elongatus PCC 7942, is a genetically tractable obligate phototroph that is being developed for the bioproduction of high-value chemicals. Genome-scale models (GEMs) have been successfully used to assess and engineer cellular metabolism; however, GEMs of phototrophic metabolism have been limited by the lack of experimental datasets for model validation and the challenges of incorporating photon uptake. Here, we develop a GEM of metabolism in S.
View Article and Find Full Text PDFWhile many antibody therapeutics are formulated at low concentration (~10-20 mg/mL) for intravenous administration, high concentration (> 100 mg/mL) formulations may be required for subcutaneous delivery in certain clinical indications. For such high concentration formulations, product color is more apparent due to the higher molecular density across a given path-length. Color is therefore a product quality attribute that must be well-understood and controlled, to demonstrate process consistency and enable clinical trial blinding.
View Article and Find Full Text PDF