A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Integration of physiologically relevant photosynthetic energy flows into whole genome models of light-driven metabolism. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Characterizing photosynthetic productivity is necessary to understand the ecological contributions and biotechnology potential of plants, algae, and cyanobacteria. Light capture efficiency and photophysiology have long been characterized by measurements of chlorophyll fluorescence dynamics. However, these investigations typically do not consider the metabolic network downstream of light harvesting. By contrast, genome-scale metabolic models capture species-specific metabolic capabilities but have yet to incorporate the rapid regulation of the light harvesting apparatus. Here, we combine chlorophyll fluorescence parameters defining photosynthetic and non-photosynthetic yield of absorbed light energy with a metabolic model of the pennate diatom Phaeodactylum tricornutum. This integration increases the model predictive accuracy regarding growth rate, intracellular oxygen production and consumption, and metabolic pathway usage. Through the quantification of excess electron transport, we uncover the sequential activation of non-radiative energy dissipation processes, cross-compartment electron shuttling, and non-photochemical quenching as the rapid photoacclimation strategy in P. tricornutum. Interestingly, the photon absorption thresholds that trigger the transition between these mechanisms were consistent at low and high incident photon fluxes. We use this understanding to explore engineering strategies for rerouting cellular resources and excess light energy towards bioproducts in silico. Overall, we present a methodology for incorporating a common, informative data type into computational models of light-driven metabolism and show its utilization within the design-build-test-learn cycle for engineering of photosynthetic organisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9826171PMC
http://dx.doi.org/10.1111/tpj.15965DOI Listing

Publication Analysis

Top Keywords

models light-driven
8
light-driven metabolism
8
chlorophyll fluorescence
8
light harvesting
8
light energy
8
light
5
metabolic
5
integration physiologically
4
physiologically relevant
4
photosynthetic
4

Similar Publications