Publications by authors named "Jannis Krumland"

Understanding the electronic structure of mixed-dimensional heterostructures is essential for maximizing their application potential. However, accurately modeling such interfaces is challenging due to the complex interplay between the subsystems. We employ a computational framework integrating first-principles methods, including , density functional theory (DFT), and the polarizable continuum model, to elucidate the electronic structure of mixed-dimensional heterojunctions formed by free-base phthalocyanines and monolayer molybdenum disulfide.

View Article and Find Full Text PDF

Mechanical deformations, either spontaneously occurring during sample preparation or purposely induced in their nanoscale manipulation, drastically affect the electronic and optical properties of transition metal dichalcogenide monolayers. In this first-principles work based on density-functional theory, we shed light on the interplay among strain, curvature, and electronic structure of MoSe nanowrinkles. We analyze their structural properties highlighting the effects of coexisting local domains of tensile and compressive strain in the same system.

View Article and Find Full Text PDF

Single-photon emission from monolayer transition metal dichalcogenides requires the existence of localized, atom-like states within the extended material. Here, we predict from first-principles the existence of quantum dots around atomic-scale protrusions, which result from substrate roughness or particles trapped between layers. Using density functional theory, we find such deformations to give rise to local membrane stretching and curvature, which lead to the emergence of gap states.

View Article and Find Full Text PDF

The ultrafast dynamics of charge carriers in organic donor-acceptor interfaces are of primary importance to understanding the fundamental properties of these systems. In this work, we focus on a charge-transfer complex formed by quaterthiophene p-doped by tetrafluoro-tetracyanoquinodimethane and investigate electron dynamics and vibronic interactions also at finite temperatures by applying a femtosecond pulse in resonance with the two lowest energy excitations of the system with perpendicular and parallel polarization with respect to the interface. The adopted formalism based on real-time time-dependent density-functional theory coupled to Ehrenfest dynamics enables monitoring the dynamical charge transfer across the interface and assessing the role played by the nuclear motion.

View Article and Find Full Text PDF

The design of low-dimensional organic-inorganic interfaces for the next generation of opto-electronic applications requires in-depth understanding of the microscopic mechanisms ruling electronic interactions in these systems. In this work, we present a first-principles study based on density-functional theory inspecting the structural, energetic, and electronic properties of five molecular donors and acceptors adsorbed on freestanding hexagonal boron nitride (hBN) and molybdenum disulfide (MoS) monolayers. All considered interfaces are stable, due to the crucial contribution of dispersion interactions, which are maximized by the overall flat arrangement of the physisorbed molecules on both substrates.

View Article and Find Full Text PDF

Among polycyclic aromatic hydrocarbons, pyrene is widely used as an optical probe thanks to its peculiar ultraviolet absorption and infrared emission features. Interestingly, this molecule is also an abundant component of the interstellar medium, where it is detected via its unique spectral fingerprints. In this work, we present a comprehensive first-principles study on the electronic and vibrational response of pyrene and its cation to ultrafast, coherent pulses in resonance with their optically active excitations in the ultraviolet region.

View Article and Find Full Text PDF

We present LayerPCM, an extension of the polarizable-continuum model coupled to real-time time-dependent density-functional theory, for an efficient and accurate description of the electrostatic interactions between molecules and multilayered dielectric substrates on which they are physisorbed. The former are modeled quantum-mechanically, while the latter are treated as polarizable continua characterized by their dielectric constants. The proposed approach is purposely designed to simulate complex hybrid heterostructures with nano-engineered substrates including a stack of anisotropic layers.

View Article and Find Full Text PDF

The first-principles simulation of the electronic structure of organic semiconductors in solution poses a number of challenges that are not trivial to address simultaneously. In this work, we investigate the effects and the mutual interplay of solvation, alkylization, and doping on the structural, electronic, and optical properties of sexithiophene, a representative organic semiconductor molecule. To this end, we employ (time-dependent) density functional theory in conjunction with the polarizable-continuum model.

View Article and Find Full Text PDF

Real-time time-dependent density functional theory, in conjunction with the Ehrenfest molecular dynamics scheme, is becoming a popular methodology to investigate ultrafast phenomena on the nanoscale. Thanks to recent developments, it is also possible to explicitly include in the simulations a time-dependent laser pulse, thereby accessing the transient excitation regime. However, the complexity entailed in these calculations calls for in-depth analysis of the accessible and yet approximate (either "dressed" or "bare") quantities in order to evaluate their ability to provide us with a realistic picture of the simulated processes.

View Article and Find Full Text PDF

The mechanism and the nature of the species formed by molecular doping of the model polymer poly(3-hexylthiophene) (P3HT) in its regioregular (rre-) and regiorandom (rra-) forms in solution are investigated for three different dopants: the prototypical π-electron acceptor 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (FTCNQ), the strong Lewis acid tris(pentafluorophenyl)borane (BCF), and the strongly oxidizing complex molybdenum tris[1-(methoxycarbonyl)-2-(trifluoromethyl)ethane-1,2-dithiolene] (Mo(tfd-COMe)). In a combined optical and electron paramagnetic resonance study, we show that the doping of rreP3HT in solution occurs by integer charge transfer, resulting in formation of P3HT radical cations (polarons) for all of the dopants considered here. Remarkably, despite the different chemical nature of the dopants and dopant-polymer interaction, the formed polarons exhibit essentially identical optical absorption spectra.

View Article and Find Full Text PDF