Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
We present LayerPCM, an extension of the polarizable-continuum model coupled to real-time time-dependent density-functional theory, for an efficient and accurate description of the electrostatic interactions between molecules and multilayered dielectric substrates on which they are physisorbed. The former are modeled quantum-mechanically, while the latter are treated as polarizable continua characterized by their dielectric constants. The proposed approach is purposely designed to simulate complex hybrid heterostructures with nano-engineered substrates including a stack of anisotropic layers. LayerPCM is suitable for describing the polarization-induced renormalization of frontier energy levels of the adsorbates in the static regime. Moreover, it can be reliably applied to simulating laser-induced ultrafast dynamics of molecules through the inclusion of electric fields generated by Fresnel-reflection at the substrate. Depending on the complexity of the underlying layer structure, such reflected fields can assume non-trivial shapes and profoundly affect the dynamics of the photo-excited charge carriers in the molecule. In particular, the interaction with the substrate can give rise to strong delayed fields, which lead to interference effects resembling those of multi-pulse-based spectroscopy. The robustness of the implementation and the above-mentioned features are demonstrated with a number of examples, ranging from intuitive models to realistic systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0050158 | DOI Listing |