Publications by authors named "Jackson D Megiatto"

We report a synthetic strategy that allows for the preparation of sterically encumbered heteroleptic Ru(II)porphyrinates with the desired configuration of stable/inert and weak/labile axial ligands to direct reactions between substrates to exclusively occur at the sterically encumbered face. To demonstrate the method, we describe the synthesis of a strapped-Ru(II)porphyrinate bearing a stable/inert triphenylphosphine (PPh) bulky axial ligand coordinated to the central cavity and a weak/labile methanol molecule coordinated at the internal axial position. With this axial ligand configuration, the reported Ru(II)porphyrinate exclusively promotes carbene transfer reactions to olefins through the central cavity, which has been verified by the selective formation of cycloprane-linked [2]rotaxanes.

View Article and Find Full Text PDF

The promising field of nanomedicine stimulates a continuous search for multifunctional nanotheranostic systems for imaging and drug delivery. Herein, we demonstrate that application of supramolecular chemistry's concepts in dendritic assemblies can enable the formation of advanced dendrimer-based nanotheranostic devices. A dendrimer bearing 81 triazolylferrocenyl terminal groups adopts a more compact shell-like structure in polar solvents with the ferrocenyl peripheral groups backfolding toward the hydrophobic dendrimer interior, while exposing the more polar triazole moieties as the dendritic shell.

View Article and Find Full Text PDF

We present a straightforward "click chemistry" methodology for the functionalization of water-oxidation catalyst iridium oxide nanoparticles (IrOx-NPs) with a multi-functionalized porphyrin-based photosynthetic model as sensitizer for the preparation of bioinspired photo-catalysts. This efficient method overcomes the usual aggregation issue found when decorating water oxidation nanocolloidal catalysts with hydrophobic sensitizers.

View Article and Find Full Text PDF

Selectivity in N-H and S-H carbene insertion reactions promoted by Ru(II)porphyrinates currently requires slow addition of the diazo precursor and large excess of the primary amine and thiol substrates in the reaction medium. Such conditions are necessary to avoid the undesirable carbene coupling and/or multiple carbene insertions. Here, the authors demonstrate that the synergy between the steric shielding provided by a Ru(II)porphyrinate-based macrocycle with a relatively small central cavity and the kinetic stabilization of otherwise labile coordinative bonds, warranted by formation of the mechanical bond, enables single carbene insertions to occur with quantitative efficiency and perfect selectivity even in the presence of a large excess of the diazo precursor and stoichiometric amounts of the primary amine and thiol substrates.

View Article and Find Full Text PDF

A 5,15-bis(1,1'-biphenyl)porphyrin-based molecular clip covalently connected to a ditopic aliphatic ester loop moiety yields a semi-rigid macrocycle with a well-defined cavity. The resulting macrocycle fits the structural requirements for the preparation of porphyrinates capable of promoting formation of C-C bonds. To demonstrate the usefulness of porphyrin-based macrocycles, an active-metal-template synthesis of rotaxanes through a redox non-innocent carbene transfer reaction is described.

View Article and Find Full Text PDF

In natural photosynthesis, the protein backbone directs and positions primary and secondary electron donor and acceptor moieties in the reaction center to control the yield and kinetics of the sequential electron transfer reactions that transform light energy into chemical potential. Organization of the active cofactors is mainly driven by noncovalent interactions between the protein scaffold and the chromophores. Based on the natural system blueprint, several research efforts have investigated π-π stacking, ionic interactions as well as formation of hydrogen and coordinative bonds as noncovalent organizing principles for the assembly of electron donors and acceptors in artificial reaction centers.

View Article and Find Full Text PDF

A general protocol is developed to obtain D-glucosamine from three widely available biomass residues: shrimp shells, cicada sloughs, and cockroaches. The protocol includes three steps: (1) demineralization, (2) deproteinization, and (3) chitin hydrolysis. This simple, general protocol opens the door to obtain an invaluable nitrogen-containing compound from three biomass residues, and it can potentially be applied to other chitin sources.

View Article and Find Full Text PDF

The unusually high tolerance toward chemical functional groups of the copper(I)-catalyzed Huisgen-Sharpless-Meldal 1,3-dipolar cycloaddition of azides and alkynes protocol (the CuAAC or "click" reaction) associated with its mild conditions and high yields has been explored in the present methodology to successfully prepare water oxidation catalyst iridium oxide nanoparticles decorated with organic dyes. The "click reaction" has proven to be an excellent synthetic tool to overcome the incompatible solubility of the hydrophilic iridium oxide nanoparticles and the hydrophobic dyes. A complex artificial photosynthetic model designed to mimic the photoinduced redox processes occurring in photosystem II is used as a hydrophobic dye to highlight the efficiency and selectiveness of the method.

View Article and Find Full Text PDF

A Co /porphyrinate-based macrocycle in the presence of a 3,5-diphenylpyridine axial ligand functions as an endotopic ligand to direct the assembly of [2]rotaxanes from diazo and styrene half-threads, by radical-carbene-transfer reactions, in excellent 95 % yield. The method reported herein applies the active-metal-template strategy to include radical-type activation of ligands by the metal-template ion during the organometallic process which ultimately yields the mechanical bond. A careful quantitative analysis of the product distribution afforded from the rotaxane self-assembly reaction shows that the Co /porphyrinate subunit is still active after formation of the mechanical bond and, upon coordination of an additional diazo half-thread derivative, promotes a novel intercomponent C-H insertion reaction to yield a new rotaxane-like species.

View Article and Find Full Text PDF

A new set of [Cu(phen)] based rotaxanes, featuring [60]-fullerene as an electron acceptor and a variety of electron donating moieties, namely zinc porphyrin (ZnP), zinc phthalocyanine (ZnPc) and ferrocene (Fc), has been synthesized and fully characterized with respect to electrochemical and photophysical properties. The assembly of the rotaxanes has been achieved using a slight variation of our previously reported synthetic strategy that combines the Cu(i)-catalyzed azide-alkyne cycloaddition reaction (the "click" or CuAAC reaction) with Sauvage's metal-template protocol. To underline our results, complementary model rotaxanes and catenanes have been prepared using the same strategy and their electrochemistry and photo-induced processes have been investigated.

View Article and Find Full Text PDF

The macromolecule sodium lignosulfonate (SL) has been investigated as dispersing agent for aqueous alumina colloids as a renewable alternative to usual petrochemical stabilizing agents. Optimization of the SL concentration necessary to stabilize the alumina suspension at different pH values was determined by viscometer. The results showed that addition of 250 ppm of the total suspension mass led to about 70% viscosity reduction of the suspension, whereas zeta potential analysis revealed negative values for the SL suspensions throughout the pH range investigated, suggesting that the alumina particles were covered by negatively charged SL molecules.

View Article and Find Full Text PDF

Using natural photosynthesis as a model, bio-inspired constructs for fuel generation from sunlight are being developed. Here we report the synthesis and time-resolved spectroscopic analysis of a molecular triad in which a porphyrin electron donor is covalently linked to both a cyanoporphyrin electron acceptor and a benzimidazole-phenol model for the TyrZ-D1His190 pair of PSII. A dual-laser setup enabled us to record the ultrafast kinetics and long-living species in a single experiment.

View Article and Find Full Text PDF

The concept of Nanomedicine emerged along with the new millennium, and it is expected to provide solutions to some of modern medicine's unsolved problems. Nanomedicine offers new hopes in several critical areas such as cancer treatment, viral and bacterial infections, medical imaging, tissue regeneration, and theranostics. To explore all these applications, a wide variety of nanomaterials have been developed which include liposomes, dendrimers, nanohydrogels and polymeric, metallic and inorganic nanoparticles.

View Article and Find Full Text PDF

A new series of nanoscale electron donor-acceptor systems with [2]catenane architectures has been synthesized, incorporating magnesium porphyrin (MgP) or free base porphyrin (H2P) as electron donor and C60 as electron acceptor, surrounding a central tetrahedral Cu(I)-1,10-phenanthroline (phen) complex. Model catenated compounds incorporating only one or none of these photoactive moieties were also prepared. The synthesis involved the use of Sauvage's metal template protocol in combination with the 1,3-dipolar cycloaddition of azides and alkynes ("click chemistry"), as in other recent reports from our laboratories.

View Article and Find Full Text PDF

In water-oxidizing photosynthetic organisms, light absorption generates a powerfully oxidizing chlorophyll complex (P680(•+)) in the photosystem II reaction centre. This is reduced via an electron transfer pathway from the manganese-containing water-oxidizing catalyst, which includes an electron transfer relay comprising a tyrosine (Tyr)-histidine (His) pair that features a hydrogen bond between a phenol group and an imidazole group. By rapidly reducing P680(•+), the relay is thought to mitigate recombination reactions, thereby ensuring a high quantum yield of water oxidation.

View Article and Find Full Text PDF

The effect of molecular topology, and conformation on the dynamics of photoinduced electron transfer (ET) processes has been studied in interlocked electron donor-acceptor systems, specifically rotaxanes with zinc(II)-tetraphenylporphyrin (ZnP) electron donor and [60]fullerene (C(60)) as the electron acceptor. Formation or cleavage of coordinative bonds was used to induce major topological and conformational changes in the interlocked architecture. In the first approach, the tweezers-like structure created by the two ZnP stopper groups on the thread was used as a recognition site for complexation of 1,4-diazabicyclo[2.

View Article and Find Full Text PDF

In the photosynthetic photosystem II, electrons are transferred from the manganese-containing oxygen evolving complex (OEC) to the oxidized primary electron-donor chlorophyll P680(•+) by a proton-coupled electron transfer process involving a tyrosine-histidine pair. Proton transfer from the tyrosine phenolic group to a histidine nitrogen positions the redox potential of the tyrosine between those of P680(•+) and the OEC. We report the synthesis and time-resolved spectroscopic study of a molecular triad that models this electron transfer.

View Article and Find Full Text PDF

Photoelectrochemical water splitting directly converts solar energy to chemical energy stored in hydrogen, a high energy density fuel. Although water splitting using semiconductor photoelectrodes has been studied for more than 40 years, it has only recently been demonstrated using dye-sensitized electrodes. The quantum yield for water splitting in these dye-based systems has, so far, been very low because the charge recombination reaction is faster than the catalytic four-electron oxidation of water to oxygen.

View Article and Find Full Text PDF

A series of random copoly(styrene)s has been synthesized via radical polymerization of functionalized anthraquinone (AQ) and β-O-4 lignin model monomers. The copolymers were designed to have a different number of styrene spacer groups between the AQ and β-O-4 lignin side chains aiming at investigating the distance effects on AQ/β-O-4 electron transfer mechanisms. A detailed molecular characterization, including techniques such as size exclusion chromatography, MALDI-TOF mass spectrometry, and (1)H, (13)C, (31)P NMR and UV-vis spectroscopies, afforded quantitative information about the composition of the copolymers as well as the average distribution of the AQ and β-O-4 groups in the macromolecular structures.

View Article and Find Full Text PDF

A straightforward procedure based on the formation of intramolecular hydrogen bonds to impart selectivity in the preparation of multi-functionalized porphyrins has been developed. To illustrate the concept, the synthesis of a biomimetic artificial photosynthetic model able to undergo electron and proton transfer reactions upon irradiation is reported.

View Article and Find Full Text PDF

We report the photophysical and electrochemical properties of phenol-pyrrolidino[60]fullerenes 1 and 2, in which the phenol hydroxyl group is ortho and para to the pyrrolidino group, respectively, as well as those of a phenyl-pyrrolidino[60]fullerene model compound, 3. For the ortho analog 1, the presence of an intramolecular hydrogen bond is supported by (1)H NMR and FTIR characterization. The redox potential of the phenoxyl radical-phenol couple in this architecture is 240 mV lower than that observed in the associated para compound 2.

View Article and Find Full Text PDF

Light-driven intramolecular electron transfer (ET) and energy transfer (EnT) processes in two rotaxanes, the first containing two free base porphyrins and C(60) fullerene moieties incorporated around a Cu(I)bisphenanthroline core ((H(2)P)(2)-Cu(I)(phen)(2)-C(60)) and a second lacking the fullerene moiety ((H(2)P)(2)-Cu(I)(phen)(2)), were studied by X-band (9.5 GHz) time-resolved electron paramagnetic resonance (TREPR) spectroscopy. The experiments were performed in frozen toluene and ethanol and different phases of the nematic liquid crystal (E-7).

View Article and Find Full Text PDF

A new and less hazardous procedure for demetalation of Cu(I)-phenanthroline-based interlocked molecules, using aqueous NH(4)OH rather than toxic KCN, has been developed. The conditions are compatible with materials containing nucleophile-sensitive appended groups such as C(60), and coordinating moieties such as zinc(II)-porphyrins.

View Article and Find Full Text PDF

In the present study, the main focus was the characterization and application of the by-product lignin isolated through an industrial organosolv acid hydrolysis process from sugarcane bagasse, aiming at the production of bioethanol. The sugarcane lignin was characterized and used to prepare phenolic-type resins. The analysis confirmed that the industrial sugarcane lignin is of HGS type, with a high proportion of the less substituted aromatic ring p-hydroxyphenyl units, which favors further reaction with formaldehyde.

View Article and Find Full Text PDF

A series of [2]rotaxane materials, in which [60]fullerene is linked to a macrocycle and ferrocene (Fc) moieties are placed at the termini of a thread, both of which possess a central Cu(I)-1,10-phenanthroline [Cu(phen)(2)](+) complex, were synthesized by self-assembly using Sauvage metal template methodology. Two types of threads were constructed, one with terminal ester linkages, and a second with terminal 1,2,3-triazole linkages derived from Cu(I)-catalyzed "click" 1,3-cycloaddition reactions. Model compounds lacking the fullerene moiety were prepared in an analogous manner.

View Article and Find Full Text PDF