The firing stage is a critical phase in ceramic tile production, where the interplay of raw material composition and thermal treatment determine essential properties such as water absorption (WA) and bending strength (BS). This study employs advanced machine learning (ML) models to accurately predict these properties by capturing their complex nonlinear relationships. A robust dataset of 312 ceramic samples was analyzed, including variables such as particle size distribution, chemical and mineralogical composition, and firing temperatures ranging from 1000 to 1300 °C.
View Article and Find Full Text PDFThe shaping and drying of ceramics are a critical yet complex process that directly influences ceramic materials' final properties and performance. Predicting key parameters such as the coefficient of plasticity, mass loss during drying in the air at the critical point, and shaping moisture is essential for optimizing these processes. This study analyzes the dataset of the clays of various chemical compositions to predict and reveal the most important influences on the shaping and drying parameters in producing ceramic tiles.
View Article and Find Full Text PDFAmid growing environmental concerns and the increasing demand for sustainable construction practices, the exploration of alternative materials in building applications has garnered significant attention. This paper provides a comprehensive review of the use of agricultural waste as an aggregate in cementitious composites, with a particular focus on palm kernel shells, coconut shells, hazelnut, peanut and pistachio shells, stone fruit shells and pits, date and grape seeds, rice husks, maize (corn) cobs, and sunflower seed shells. For each type of agro-waste, the paper discusses key physical and mechanical properties, global production volumes, and primary countries of origin.
View Article and Find Full Text PDFThis paper explores the effect of waste rubber grain size on the porosity, modulus of elasticity, thermal properties, and soundproofing performance of polymer composites with different thicknesses (10, 15, and 20 mm). All properties were tested in accordance with European standards, with the exception of porosity, which was measured using Archimedes' principle. The findings indicate that with a consistent amount of polyurethane glue, finer rubber grains result in composites with higher porosity, leading to a lower modulus of elasticity but enhanced thermal and sound insulation.
View Article and Find Full Text PDFThe causes of cracks in concrete are varied, and regardless of their origin, these cracks invariably have a detrimental impact on the durability of concrete structures and escalate their maintenance costs. This paper presents a comprehensive review of current knowledge regarding the methods of self-healing in concrete, ranging from autogenic and improved autogenic self-healing to the autonomous self-healing of concrete. Particular emphasis is placed on the methods of autonomous concrete self-healing: the bacterial healing method, the crystalline hydrophilic additives healing method, and the capsule-based self-healing method.
View Article and Find Full Text PDFAgricultural biomass has great bioenergy potential due to its availability, and it is a carbon-free energy source. During biomass incineration, biomass ash is formed, which is still considered as a waste without proper disposal and management solutions. Various biomass ash utilization options were investigated, mainly concerning engineering issues (the mechanical characterization of newly produced building materials or products), and there is a lack of knowledge of environmental issues arising from this "waste" material utilization in civil engineering practice.
View Article and Find Full Text PDFThis paper presents an experimental investigation of the compressive behavior of high-strength self-compacting concrete exposed to temperatures up to 600 °C. Ten different concrete compositions were tested, in which part of the cement (by weight) was replaced by three different mineral additives (5-15% metakaolin, 20-40% fly ash and 5-15% limestone). The stress-strain curves, compressive strength, modulus of elasticity and strain at peak stress were evaluated from uniaxial compression tests.
View Article and Find Full Text PDFThis paper investigates the effectiveness of a specific crystalline waterproofing admixture (CWA) in concrete as a function of a water-binder ratio. Four concrete mixes with and without CWA were prepared; two of them with a water-binder ratio of 0.45 and two of them with a water-binder ratio of 0.
View Article and Find Full Text PDFMaterials (Basel)
August 2020
This paper estimates the frost resistance of bricks using the ratio of compressive strength before freezing to compressive strength after freezing to describe the damage degree of bricks being exposed to freeze-thaw cycles. In an effort to find the ratio that clearly distinguishes resistant bricks from non-resistant bricks, the authors attempted to establish the correlation between the ratio and Maage factor as a recognized model for assessing brick resistance. To clarify the degree of damage of individual bricks, the pore size distribution has been investigated by means of mercury porosimetry.
View Article and Find Full Text PDFThis paper aims to assess the influence of clogging on paving material (pervious concrete) drainage characteristics as well as the influence of the properties of an unbound base layer on drainage characteristics of the whole paving system. The clogging influence has been studied measuring the drainage characteristics on pervious concrete flags before and after their clogging, according to ASTM C1701-09. Additionally, the drainage characteristics of uncontaminated pervious concrete as a paving material was assessed using the falling head method.
View Article and Find Full Text PDFThis study examines the influence of raw material characteristics, methods of shaping and of parameters of firing process of clay bricks, on pore-size distribution and on resistance to freeze-thaw cycles (with particular emphasis on the retention time of the specimens at the maximum achieved temperature). Pore-size distribution was measured by mercury-intrusion porosimetry, while the resistance to freeze-thaw cycles was assessed by exposing the bricks to freeze-thaw cycles (HRN B.D8.
View Article and Find Full Text PDFMaterials (Basel)
September 2019
In this paper, the resistance to the freeze/thaw cycles for four groups of mortars (lime-LM, lime based-LBM, cement-CM, and aerated cement-ACM mortars) with different amount of mortar components within each group is quantified via a ratio of flexural/compressive strength after and before exposure to freeze/thaw cycles. Using a pore system obtained by three different methods (mercury intrusion porosimetry, X-ray micro-computed tomography analysis, and SEM (Scanning Electron Microscopy) analysis), an attempt was made to explain why some mortars achieved better resistance to freeze/thaw cycles than others. The mortars with lime as a binder in the composition (LM and LBM groups) did not survive the freezing and thawing regime, while no visible damage was recorded in samples of the CM and ACM group.
View Article and Find Full Text PDFAgricultural biomass ash is a waste material produced by incineration of residue from fields after harvesting crops. The use of agricultural biomass in industry produces large quantities of ash that represent an ecological problem. Another ecological problem is the dependency of road building on natural materials, which has been traditionally used for all pavement layers.
View Article and Find Full Text PDF