Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The firing stage is a critical phase in ceramic tile production, where the interplay of raw material composition and thermal treatment determine essential properties such as water absorption (WA) and bending strength (BS). This study employs advanced machine learning (ML) models to accurately predict these properties by capturing their complex nonlinear relationships. A robust dataset of 312 ceramic samples was analyzed, including variables such as particle size distribution, chemical and mineralogical composition, and firing temperatures ranging from 1000 to 1300 °C. Among the four ensemble ML models evaluated, CatBoost demonstrated the highest predictive performance. Model accuracy was assessed using multiple evaluation metrics, including the coefficient of determination (R²), root mean squared error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE). To enhance interpretability, SHapley Additive exPlanations (SHAP) were used, revealing that clay mineral content and SiO₂ concentration were the most influential factors for WA, contributing approximately 40% and 30%, respectively. For BS, firing temperature (35%) and Al₂O₃ content (25%) were identified as the key predictors. Partial dependence plots further illustrated critical thresholds, such as a significant drop in WA above 62% SiO₂ and optimal BS values near 1200 °C, dindings that align with known ceramic processing principles while offering new, data-driven formulation insights. These results demonstrate the value of explainable artificial intelligence (AI) in enabling real-time process optimization, enhancing product consistency, and supporting energy-efficient ceramic manufacturing. Future work will focus on extendingthe dataset to include a wider variety of clay compositions and investigating hybrid modeling approaches for further improve predictive performance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12381015PMC
http://dx.doi.org/10.1038/s41598-025-12011-9DOI Listing

Publication Analysis

Top Keywords

advanced machine
8
machine learning
8
learning models
8
firing stage
8
predictive performance
8
ceramic
5
models prediction
4
prediction ceramic
4
ceramic tiles'
4
tiles' properties
4

Similar Publications

Obsessive-compulsive disorder (OCD) is a chronic and disabling condition affecting approximately 3.5% of the global population, with diagnosis on average delayed by 7.1 years or often confounded with other psychiatric disorders.

View Article and Find Full Text PDF

Early prediction of orthodontic gingival enlargement using S100A4: a biomarker-based risk stratification model.

Odontology

September 2025

Department of Periodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India.

Orthodontic-induced gingival enlargement (OIGE) affects approximately 15-30% of patients undergoing orthodontic treatment and remains largely unpredictable, often relying on subjective clinical assessments made after irreversible tissue changes have occurred. S100A4 is a well-characterized marker of activated fibroblasts involved in pathological tissue remodeling. This was a cross-sectional precision biomarker study that analyzed gingival tissue samples from three groups: healthy controls (n = 60), orthodontic patients without gingival enlargement (n = 31), and patients with clinically diagnosed OIGE (n = 61).

View Article and Find Full Text PDF

The global shortage of suitable donor kidneys is the primary challenge in kidney transplantation, and it is exacerbated by ageing donors with increased numbers of health issues. Improving organ assessment, preservation and conditioning could enhance organ utilization and patient outcomes. Hypothermic machine perfusion (HMP) is associated with better results than static cold storage by reducing delayed graft function and improving short-term graft survival, especially in kidneys recovered from marginal-quality donors.

View Article and Find Full Text PDF

Structural biology is fundamental to understanding the molecular basis of biological processes. While machine learning-based protein structure prediction has advanced considerably, experimentally determined structures remain indispensable for guiding structure-function analyses and for improving predictive modeling. However, experimental studies of protein complexes continue to pose challenges, particularly due to the necessity of high protein concentrations and purity for downstream analyses such as cryogenic electron microscopy.

View Article and Find Full Text PDF

Machine Learning-Aided Screening and Design Rule Discovery for LWIR-Transparent Optical Materials.

J Chem Inf Model

September 2025

Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721-0041, United States.

The development of low-cost, high-performance materials with enhanced transparency in the long-wavelength infrared (LWIR) region (800-1250 cm/8-12.5 μm) is essential for advancing thermal imaging and sensing technologies. Traditional LWIR optics rely on costly inorganic materials, limiting their broader deployment.

View Article and Find Full Text PDF