JACC Basic Transl Sci
July 2025
Atrial fibrillation (AF) often coexists with heart failure, both involving inflammatory signaling and cardiac fibroblasts. To understand the role of fibroblast NLR family pyrin domain containing 3 (NLRP3) inflammasome in cardiac function, we found that NLRP3 was up-regulated in atrial fibroblasts from AF patients. Fibroblast-specific activation of NLRP3 in mice induced AF-promoting atrial myopathy and heart failure with diastolic dysfunction, accompanied by increased fibrosis, and reduced conduction velocity.
View Article and Find Full Text PDFInflammasomes are multiprotein complexes of the innate immune system that mediate inflammatory responses to infection and to local and systemic stress and tissue injury. The principal function is to facilitate caspase-1 auto-activation and subsequently maturation and release of the effectors interleukin (IL)-1β and IL-18. The atrial-specific NLRP3 inflammasome is a unifying causal feature of atrial fibrillation (AF) development, progression and recurrence after ablation.
View Article and Find Full Text PDFPostoperative atrial fibrillation (poAF) is AF occurring days after surgery, with a prevalence of 33% among patients undergoing open-heart surgery. The degree of postoperative inflammation correlates with poAF risk, but less is known about the cellular and molecular mechanisms driving postoperative atrial arrhythmogenesis. We performed single-cell RNA-seq comparing atrial nonmyocytes from mice with and without poAF, which revealed infiltrating CCR2+ macrophages to be the most altered cell type.
View Article and Find Full Text PDFBackground: Changes in mitochondria have been implicated in atrial fibrillation (AF), but their manifestations and significance are poorly understood. Here, we studied changes in mitochondrial morphology and function during AF and assessed the effect of a mitochondrial-targeted intervention in a large animal model.
Methods And Results: Atrial cardiomyocytes (ACMs) were isolated from dogs in electrically-driven AF for periods of 24 hours to 3 weeks and from humans with/without longstanding persistent AF.
Background And Aims: Enhanced inflammatory signalling causally contributes to atrial fibrillation (AF) development. Gasdermin D (GSDMD) is an important downstream effector of several inflammasome pathways. However, the role of GSDMD, particularly the cleaved N-terminal (NT)-GSDMD, in non-immune cells remains elusive.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
March 2025
Naunyn Schmiedebergs Arch Pharmacol
March 2025
Thrombin supports coagulation-independent inflammation via protease-activated receptors (PAR). PAR4 is specifically increased in obese human atria, correlating with NLRP3 inflammasome activation. PAR4-mediated NLRP3 inflammasome activation in atrial cardiomyocytes is not known, nor have signaling partners been identified.
View Article and Find Full Text PDFAims: Cellular senescence is a stress-related or aging response believed to contribute to many cardiac conditions; however, its role in atrial fibrillation (AF) is unknown. Age is the single most important determinant of the risk of AF. The present study was designed to (i) evaluate AF susceptibility and senescence marker expression in rat models of aging and myocardial infarction (MI), (ii) study the effect of reducing senescent-cell burden with senolytic therapy on the atrial substrate in MI rats, and (iii) assess senescence markers in human atrial tissue as a function of age and the presence of AF.
View Article and Find Full Text PDFAims: Recent studies suggest that bioactive mediators called resolvins promote an active resolution of inflammation. Inflammatory signalling is involved in the development of the substrate for atrial fibrillation (AF). The aim of this study is to evaluate the effects of resolvin-D1 on atrial arrhythmogenic remodelling resulting from left ventricular (LV) dysfunction induced by myocardial infarction (MI) in rats.
View Article and Find Full Text PDFBackground: Atrial fibrillation (AF)-the most common sustained cardiac arrhythmia-increases thromboembolic stroke risk 5-fold. Although atrial hypocontractility contributes to stroke risk in AF, the molecular mechanisms reducing myofilament contractile function remain unknown. We tested the hypothesis that increased expression of PPP1R12C (protein phosphatase 1 regulatory subunit 12C)-the PP1 (protein phosphatase 1) regulatory subunit targeting MLC2a (atrial myosin light chain 2)-causes hypophosphorylation of MLC2a and results in atrial hypocontractility.
View Article and Find Full Text PDFJ Clin Invest
October 2023
Chronic kidney disease (CKD) is associated with a higher risk of atrial fibrillation (AF). The mechanistic link between CKD and AF remains elusive. IL-1β, a main effector of NLR family pyrin domain-containing 3 (NLRP3) inflammasome activation, is a key modulator of conditions associated with inflammation, such as AF and CKD.
View Article and Find Full Text PDFBackground: Recent work has shown that the NLR-family-pyrin-domain-containing 3 (NLRP3) inflammasome is expressed in cardiomyocytes and when specifically activated causes atrial electrical remodeling and arrhythmogenicity. Whether the NLRP3-inflammasome system is functionally important in cardiac fibroblasts (FBs) remains controversial. In this study, we sought to uncover the potential contribution of FB NLRP3-inflammasome signaling to the control of cardiac function and arrhythmogenesis.
View Article and Find Full Text PDFBackground: Atrial fibrillation (AF), the most common arrhythmia, is associated with the downregulation of (encoding FKBP5 [FK506 binding protein 5]). However, the function of FKBP5 in the heart remains unknown. Here, we elucidate the consequences of cardiomyocyte-restricted loss of FKBP5 on cardiac function and AF development and study the underlying mechanisms.
View Article and Find Full Text PDFBackground: Atrial fibrillation (AF), the most common sustained cardiac arrhythmia, increases thromboembolic stroke risk five-fold. Although atrial hypocontractility contributes to stroke risk in AF, the molecular mechanisms reducing myofilament contractile function remain unknown. We tested the hypothesis that increased expression of PPP1R12C, the PP1 regulatory subunit targeting atrial myosin light chain 2 (MLC2a), causes hypophosphorylation of MLC2a and results in atrial hypocontractility.
View Article and Find Full Text PDFBackground: Small-conductance Ca-activated K (SK)-channel inhibitors have antiarrhythmic effects in animal models of atrial fibrillation (AF), presenting a potential novel antiarrhythmic option. However, the regulation of SK-channels in human atrial cardiomyocytes and its modification in patients with AF are poorly understood and were the object of this study.
Methods: Apamin-sensitive SK-channel current (I) and action potentials were recorded in human right-atrial cardiomyocytes from sinus rhythm control (Ctl) patients or patients with (long-standing persistent) chronic AF (cAF).
Aims: Atrial fibrillation (AF) is associated with altered cAMP/PKA signaling and an AF-promoting reduction of L-type Ca2+-current (ICa,L), the mechanisms of which are poorly understood. Cyclic-nucleotide phosphodiesterases (PDEs) degrade cAMP and regulate PKA-dependent phosphorylation of key calcium-handling proteins, including the ICa,L-carrying Cav1.2α1C subunit.
View Article and Find Full Text PDFObesity is an important contributing factor to the pathophysiology of atrial fibrillation (AF) and its complications by causing systemic changes, such as altered haemodynamic, increased sympathetic tone, and low-grade chronic inflammatory state. In addition, adipose tissue is a metabolically active organ that comprises various types of fat deposits with discrete composition and localization that show distinct functions. Fatty tissue differentially affects the evolution of AF, with highly secretory active visceral fat surrounding the heart generally having a more potent influence than the rather inert subcutaneous fat.
View Article and Find Full Text PDFAims: Abnormal intracellular calcium (Ca2+) handling contributes to the progressive nature of atrial fibrillation (AF), the most common sustained cardiac arrhythmia. Evidence in mouse models suggests that activation of the nuclear factor of activated T-cell (NFAT) signalling pathway contributes to atrial remodelling. Our aim was to determine the role of NFATc2 in AF in humans and mouse models.
View Article and Find Full Text PDFRationale: The mechanisms underlying atrial fibrillation (AF), the most common clinical arrhythmia, are poorly understood. Nucleoplasmic Ca regulates gene expression, but the nature and significance of nuclear Ca-changes in AF are largely unknown.
Objective: To elucidate mechanisms by which AF alters atrial-cardiomyocyte nuclear Ca ([Ca]) and CaMKII (Ca/calmodulin-dependent protein kinase-II)-related signaling.
Rationale: Postoperative atrial fibrillation (POAF) is a common and troublesome complication of cardiac surgery. POAF is generally believed to occur when postoperative triggers act on a preexisting vulnerable substrate, but the underlying cellular and molecular mechanisms are largely unknown.
Objective: To identify cellular POAF mechanisms in right atrial samples from patients without a history of atrial fibrillation undergoing open-heart surgery.
Background: Abnormal calcium (Ca) release from the sarcoplasmic reticulum (SR) contributes to the pathogenesis of atrial fibrillation (AF). Increased phosphorylation of 2 proteins essential for normal SR-Ca cycling, the type-2 ryanodine receptor (RyR2) and phospholamban (PLN), enhances the susceptibility to AF, but the underlying mechanisms remain unclear. Protein phosphatase 1 (PP1) limits steady-state phosphorylation of both RyR2 and PLN.
View Article and Find Full Text PDFAtrial fibrillation (AF) and heart failure (HF) are common cardiovascular diseases that often co-exist. Animal models have suggested complex AF-promoting atrial structural, electrical, and Ca-handling remodeling in the setting of HF, but data in human samples are scarce, particularly regarding Ca-handling remodeling. Here, we evaluated atrial remodeling in patients with severe left ventricular (LV) dysfunction (HFrEF), long-standing persistent ('chronic') AF (cAF) or both (HFrEF-cAF), and sinus rhythm controls with normal LV function (Ctl) using western blot in right-atrial tissue, sharp-electrode action potential (AP) measurements in atrial trabeculae and voltage-clamp experiments in isolated right-atrial cardiomyocytes.
View Article and Find Full Text PDF