Anthropogenically forced climate change signals are emerging from the noise of internal variability in observations, and the impacts on society are growing. For decades, Climate or Earth System Models have been predicting how these climate change signals will unfold. While challenges remain, given the growing forced trends and the lengthening observational record, the climate science community is now in a position to confront the signals, as represented by historical trends, in models with observations.
View Article and Find Full Text PDFObservations show an increase in the seasonal cycle amplitude of CO in northern latitudes over the past half century. Although multiple drivers contribute, observations and inversion models cannot quantitatively account for the factors contributing to the increased CO amplitude and older versions of Earth System Models (ESMs) do not simulate it. Here we show that several current generation ESMs are closer to the observed CO amplitude and highlight that in the Community Earth System Model (CESM) agricultural nitrogen (N) fertilization increases CO amplitude by 1-3 ppm throughout the Northern Hemisphere and up to 9 ppm in agricultural hotspots.
View Article and Find Full Text PDFUnlabelled: "Single Model initial-condition Large Ensembles" (SMILEs) conducted with Earth system models have transformed our ability to quantify internal climate variability and forced climate change at local and regional scales. An important consideration in their experimental design is the choice of initialization procedure as this influences the duration of initial-condition memory, with implications for interpreting the temporal evolution of both the ensemble-mean and ensemble-spread. Here we leverage the strategic design of the 100-member Community Earth System Model version 2 (CESM2) SMILE to investigate the dependence of ensemble spread on the method of initialization (micro- vs.
View Article and Find Full Text PDFSummer temperature extremes can have large impacts on humans and the biosphere, and an increase in heat extremes is one of the most visible symptoms of climate change. Multiple mechanisms have been proposed that would predict faster warming of heat extremes than typical summer days, but it is unclear whether this is occurring. Here, we show that, in both observations and historical climate model simulations, the hottest summer days have warmed at the same pace as the median globally, in each hemisphere, and in the tropics from 1959 to 2023.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2024
Arid and semi-arid regions of the world are particularly vulnerable to greenhouse gas-driven hydroclimate change. Climate models are our primary tool for projecting the future hydroclimate that society in these regions must adapt to, but here, we present a concerning discrepancy between observed and model-based historical hydroclimate trends. Over the arid/semi-arid regions of the world, the predominant signal in all model simulations is an increase in atmospheric water vapor, on average, over the last four decades, in association with the increased water vapor-holding capacity of a warmer atmosphere.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
July 2022
Climate change projections consistently demonstrate that warming temperatures and dwindling seasonal snowpack will elicit cascading effects on ecosystem function and water resource availability. Despite this consensus, little is known about potential changes in the variability of ecohydrological conditions, which is also required to inform climate change adaptation and mitigation strategies. Considering potential changes in ecohydrological variability is critical to evaluating the emergence of trends, assessing the likelihood of extreme events such as floods and droughts, and identifying when tipping points may be reached that fundamentally alter ecohydrological function.
View Article and Find Full Text PDFPrevious studies have extensively investigated the impact of Arctic sea ice anomalies on the midlatitude circulation and associated surface climate in winter. However, there is an ongoing scientific debate regarding whether and how sea ice retreat results in the observed cold anomaly over the adjacent continents. We present a robust "cold Siberia" pattern in the winter following sea ice loss over the Barents-Kara seas in late autumn in an advanced atmospheric general circulation model, with a well-resolved stratosphere.
View Article and Find Full Text PDF