A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

The pace of change of summertime temperature extremes. | LitMetric

The pace of change of summertime temperature extremes.

Proc Natl Acad Sci U S A

Department of Geography, University of California, Los Angeles, CA 90095.

Published: October 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Summer temperature extremes can have large impacts on humans and the biosphere, and an increase in heat extremes is one of the most visible symptoms of climate change. Multiple mechanisms have been proposed that would predict faster warming of heat extremes than typical summer days, but it is unclear whether this is occurring. Here, we show that, in both observations and historical climate model simulations, the hottest summer days have warmed at the same pace as the median globally, in each hemisphere, and in the tropics from 1959 to 2023. In contrast, the coldest summer days have warmed more slowly than the median in the global average, a signal that is not simulated in any of 262 simulations across 28 CMIP6 models. The observed stretching of the cold tail indicates that observed summertime temperatures have become more variable despite the lack of hot day amplification. The interannual variability and trend in the warming of both hot and cold extremes compared to the median can be explained from a surface energy balance perspective based on changes in net surface radiation and evaporative fraction. Tropical hot day amplification is projected to emerge in the future (2024-2099, SSP3-7.0 scenario), while Northern Hemisphere heat extremes are expected to continue to follow the median.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11494304PMC
http://dx.doi.org/10.1073/pnas.2406143121DOI Listing

Publication Analysis

Top Keywords

heat extremes
12
summer days
12
temperature extremes
8
days warmed
8
hot day
8
day amplification
8
extremes
6
pace change
4
change summertime
4
summertime temperature
4

Similar Publications