This bioinformatics workflow utilizes the Bacterial and Viral Bioinformatics Resource Center (BV-BRC) to investigate a potential zoonotic or reverse zoonotic transmission event on a North Carolina swine farm in 2022 (Olson RD, Assaf R, Brettin T, Conrad N, Cucinell C, Davis JJ, Dempsey DM, Dickerman A, Dietrich EM, Kenyon RW, Kuscuoglu M, Lefkowitz EJ, Lu J, Machi D, Macken C, Mao C, Niewiadomska A, Nguyen M, Olsen GJ, Overbeek JC, Parrello B, Parrello V, Porter JS, Pusch GD, Shukla M, Singh I, Stewart L, Tan G, Thomas C, VanOeffelen M, Vonstein V, Wallace ZS, Warren AS, Wattam AR, Xia F, Yoo H, Zhang Y, Zmasek CM, Scheuermann RH, Stevens RL, Nucleic Acids Res 51(D1):D678-D689, 2023). The BV-BRC contains a genomic sequence database featuring NIH/NIAID and an integrated platform for comprehensive bioinformatic analysis in the bacterial and virology space. The workflow involves dataset assembly, annotation, multiple sequence alignment, meta-CATS sequence comparison, phylogenetic analysis, subspecies classification, and PCR primer design.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
May 2025
The global transition towards clean and sustainable energy sources has led to an increasing interest in green hydrogen production. The present work focuses on the development and assessment of a solar-assisted green hydrogen production system. The basic objective of this work is to investigate the influence of solar radiation to drive the electrolysis process for green hydrogen production.
View Article and Find Full Text PDFThe development of new efficient materials for the removal of water-soluble toxic organic dyes has been one of the focused research areas in the recent past. There is a strong demand for the new materials as most of the reported techniques/materials suffer from serious limitations. In this regard, a series of flexible chitosan-based task-specific polyurethane foams (PUCS-GP, PUCS-CA-GP, PUCS-TA-GP, and PUCS-GA-GP) associated with naturally available hydroxycarboxylic acids was developed.
View Article and Find Full Text PDFThe National Institute of Allergy and Infectious Diseases (NIAID) established the Bioinformatics Resource Center (BRC) program to assist researchers with analyzing the growing body of genome sequence and other omics-related data. In this report, we describe the merger of the PAThosystems Resource Integration Center (PATRIC), the Influenza Research Database (IRD) and the Virus Pathogen Database and Analysis Resource (ViPR) BRCs to form the Bacterial and Viral Bioinformatics Resource Center (BV-BRC) https://www.bv-brc.
View Article and Find Full Text PDFThe influenza A virus genome contains 8 gene segments encoding 10 commonly recognized proteins. Additional protein products have been identified, including PB1-F2 and PA-X. We report the in-silico identification of novel isoforms of PB1-F2 and PA-X in influenza virus genomes sequenced from avian samples.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFInfection with influenza can be aggravated by bacterial co-infections, which often results in disease exacerbation. The effects of influenza infection on the upper respiratory tract (URT) microbiome are largely unknown. Here, we report a longitudinal study to assess the temporal dynamics of the URT microbiomes of uninfected and influenza virus-infected humans and ferrets.
View Article and Find Full Text PDFAntimicrob Agents Chemother
April 2020
The annotated genome of , a recently discovered drug-resistant pathogen, was determined by employing the Oxford Nanopore MinION platform and the Funannotate pipeline. The genome size and the number of protein-coding genes are notably larger than those of the most common etiological agent of aspergillosis, .
View Article and Find Full Text PDFPreviously, by targeting penicillin-binding protein 3, Pseudomonas-derived cephalosporinase (PDC), and MurA with ceftazidime-avibactam-fosfomycin, antimicrobial susceptibility was restored among multidrug-resistant (MDR) Pseudomonas aeruginosa. Herein, ceftazidime-avibactam-fosfomycin combination therapy against MDR P. aeruginosa clinical isolate CL232 was further evaluated.
View Article and Find Full Text PDFBackground: The development of high-throughput sequencing and analysis has accelerated multi-omics studies of thousands of microbial species, metagenomes, and infectious disease pathogens. Omics studies are enabling genotype-phenotype association studies which identify genetic determinants of pathogen virulence and drug resistance, as well as phylogenetic studies designed to track the origin and spread of disease outbreaks. These omics studies are complex and often employ multiple assay technologies including genomics, metagenomics, transcriptomics, proteomics, and metabolomics.
View Article and Find Full Text PDFAntimicrob Agents Chemother
October 2018
Diagn Microbiol Infect Dis
November 2018
Multidrug-resistant gram-negative pathogens are a significant health threat. Burkholderia spp. encompass a complex subset of gram-negative bacteria with a wide range of biological functions that include human, animal, and plant pathogens.
View Article and Find Full Text PDFBMC Bioinformatics
November 2014
Background: Deep shotgun sequencing on next generation sequencing (NGS) platforms has contributed significant amounts of data to enrich our understanding of genomes, transcriptomes, amplified single-cell genomes, and metagenomes. However, deep coverage variations in short-read data sets and high sequencing error rates of modern sequencers present new computational challenges in data interpretation, including mapping and de novo assembly. New lab techniques such as multiple displacement amplification (MDA) of single cells and sequence independent single primer amplification (SISPA) allow for sequencing of organisms that cannot be cultured, but generate highly variable coverage due to amplification biases.
View Article and Find Full Text PDFHigh throughput sequencing has accelerated the determination of genome sequences for thousands of human infectious disease pathogens and dozens of their vectors. The scale and scope of these data are enabling genotype-phenotype association studies to identify genetic determinants of pathogen virulence and drug/insecticide resistance, and phylogenetic studies to track the origin and spread of disease outbreaks. To maximize the utility of genomic sequences for these purposes, it is essential that metadata about the pathogen/vector isolate characteristics be collected and made available in organized, clear, and consistent formats.
View Article and Find Full Text PDFGenome Announc
October 2013
The Burkholderia cepacia complex (BCC) is a group of closely related bacteria that are responsible for respiratory infections in immunocompromised humans, most notably those with cystic fibrosis (CF). We report the genome sequences for Burkholderia cenocepacia ET12 lineage CF isolates K56-2 and BC7.
View Article and Find Full Text PDF