Publications by authors named "Ichraf Mabrouk"

Feather follicle development is essential for the phenotypic characteristics and economic value of domesticated geese. In this study, we conducted a comparative transcriptomic analysis to explore the breed-specific molecular mechanisms involved in feather follicle development in Zhedong white goose (Anser cygnoides) and Hungarian white goose (Anser anser) at five critical embryonic stages (E10, E13, E18, E23, and E28). A total of 19,622 differentially expressed genes (DEGs) were identified in geese feather follicles across the comparison groups, with significant enrichment in pathways associated with neuroactive ligand-receptor interaction, melanogenesis, tyrosine metabolism, metabolic pathways, PPAR, p53, VEGF, and Hedgehog signaling pathways.

View Article and Find Full Text PDF

Testicular development is essential for reproductive performance in geese, as the testes are the primary organs for sperm production and play a pivotal role in egg-laying physiology. Despite their importance, genes, proteins, and pathways regulating goose testicular development are poorly understood. This study employed integrative transcriptomic and proteomic analysis methods to identify critical regulators of testicular development in geese across three reproductive periods.

View Article and Find Full Text PDF

Wanxi white goose is an important male parent in crossbreeding of Chinese geese, but its short reproductive cycle restricts its application in Northeast China. Therefore, understanding the potential mechanism of breeding period regulation in Wanxi white goose will help to provide more options for crossbreeding. In this study, the reproductive period was divided into prophase (T1), metaphase (T2) and anaphase (T3) according to the laying rhythm of geese.

View Article and Find Full Text PDF

The goose industry represents a significant sector within the broader waterfowl industry in China, with early gonadal development playing a pivotal role in enhancing population productivity. Melatonin plays a crucial role in regulating early gonadal development, but the molecular mechanism underlying the effect of melatonin as a regulator remains unclear. In this study, the relationship between melatonin and egg production performance in Jilin white goose was first established, then, an in Ovo injection of melatonin in goose embryos on the embryonic day 12 (E12) was performed to evaluate the impact of melatonin on the gonadal development in Jilin white goose.

View Article and Find Full Text PDF

Spermatogenesis is a crucial indicator of geese reproduction performance and production. The testis is the main organ responsible for sperm production, and the egg-laying cycle in geese is a complex physiological process that demands precise orchestration of hormonal cues and cellular events within the testes, however, the seasonal changes in the transcriptomic and proteomic profiles of goose testicles remain unclear. To explore various aspects of the mechanisms of the seasonal cyclicity of testicles in different goose breeds, in this study, we used an integrative transcriptomic and proteomic approach to screen the key genes and proteins in the testes of 2 goose males, the Hungarian white goose and the Wanxi white goose, at 3 different periods of the laying cycle: beginning of laying cycle (BLC), peak of laying cycle (PLC), and end of laying cycle (ELC).

View Article and Find Full Text PDF

Egg production performance is an important economic trait in the poultry industry. In previous studies, attention has often been paid to the growth and development of the ovaries, while there has been less research on the testicular tissue of male goose. Due to various factors, there are usually significant differences in the process of testicular spermatogenesis among different goose breeds.

View Article and Find Full Text PDF

The Hungarian White Goose (Anser anser domesticus) is an excellent European goose breed, with high feather and meat production. Despite its importance in the poultry industry, no available genome assembly information has been published. This study aimed to present Chromosome-level and functional genome sequencing of the Hungarian White Goose.

View Article and Find Full Text PDF

Background: Jilin white goose is an excellent local breed in China, with a high annual egg production and laying eggs mainly from February to July each year. The testis, as the only organ that can produce sperm, can affect the sexual maturity and fecundity of male animals. Its growth and development are affected and regulated by a variety of factors.

View Article and Find Full Text PDF

Goose down feather has become one of the most important economical products in the goose breeding industry and it provides several essential physiological roles in birds. Therefore, understanding and regulating the development of skin and feather follicles during embryogenesis is critical for avian biology and the poultry industry. MicroRNAs are known to play an important role in controlling gene expression during skin and feather follicle development.

View Article and Find Full Text PDF

Feather is an important economic trait of poultry, and growth and development state of feathers plays an important role in the economic value of poultry. Dermal fibroblasts are required for structural integrity of the skin and for feather follicle development. How FOXO3 affects feather follicle development as skin tissues change during goose embryo (Anser cygnoides) development and growth is not well understood.

View Article and Find Full Text PDF

Poultry is subject to varying degrees of feather loss and feather pecking during production, which seriously affects the live appearance and carcass appearance of their commercial traits and greatly reduces the production profitability of the farming enterprise. It also has an impact on down production and quality in the case of geese. In this study, mathematical models (Logistic, Gompertz, and Von Bertalanffy) were used to assess feather growth and development during the embryonic period in Jilin white geese (Anser cygnoides) predicting the weight and length of feathers from the back, chest, and belly tracts at different embryonic ages, to determine which growth model more accurately described feather growth patterns.

View Article and Find Full Text PDF

Skin and feather follicle development are essential processes for goose embryonic growth. Transcriptome and next-generation sequencing (NGS) network analyses were performed to improve the genome of Zhedong White goose and discover the critical genes, miRNAs, and pathways involved in goose skin and feather follicle morphogenesis. Sequencing output generated 6,002,591,668 to 8,675,720,319 clean reads from fifteen libraries.

View Article and Find Full Text PDF

In production practice, we have found that the gray and black down on the backs of the Holdobaggy goslings is usually darker in females than in males. Melanin is the key pigment affecting the color of poultry plumage. Therefore, to determine whether the darkness of the dorsal plumage of the Holdobaggy goslings is related to sex, we study the melanin in the feather follicles of the dorsal skin during the embryonic period.

View Article and Find Full Text PDF

Feather performs important physiological functions in birds, and it is also one of the economic productions in goose farming. Understanding and modulating feather follicle development during embryogenesis are essential for bird biology and the poultry industry. CHIR-99021 is a potent Wnt/β-catenin signaling pathway activator associated with feather follicle development.

View Article and Find Full Text PDF

The Wingless-types/beta-catenin (Wnt/β-catenin) signaling pathway plays an important role in embryonic development and affects the physiological development processes of feather follicles. To investigate the role of Wnt/β-catenin pathway in regulating feather follicles morphogenesis, in ovo injection of CHIR-99021, an activator of the Wnt/β-catenin signaling pathway, was conducted in chick embryo model. Initially, a total of 40 embryos were used to assess feather follicles morphogenesis and the expression of β-catenin (E9-E17).

View Article and Find Full Text PDF