Publications by authors named "Ian D Wolf"

Mycobacterium abscessus is a pulmonary pathogen that exhibits intrinsic resistance to antibiotics, but the factors driving this resistance are incompletely understood. Insufficient intracellular drug accumulation could explain broad-spectrum resistance, but whether antibiotics fail to accumulate in M. abscessus and the mechanisms required for drug exclusion remain poorly understood.

View Article and Find Full Text PDF

Unlabelled: ) is a clinically significant pathogen and a highly genetically diverse species due to its large accessory genome. The functional consequence of this diversity remains unknown mainly because, to date, functional genomic studies in have been primarily performed on reference strains. Given the growing public health threat of infections, understanding the functional genomic differences among clinical isolates can provide more insight into how its genetic diversity influences gene essentiality, clinically relevant phenotypes, and importantly, potential drug targets.

View Article and Find Full Text PDF

is a pulmonary pathogen that exhibits intrinsic resistance to antibiotics, but the factors driving this resistance are incompletely understood. Insufficient intracellular drug accumulation could explain broad-spectrum resistance, but whether antibiotics fail to accumulate in and the mechanisms required for drug exclusion remain poorly understood. We measured antibiotic accumulation in using mass spectrometry and found a wide range of drug accumulation across clinically relevant antibiotics.

View Article and Find Full Text PDF

Proteolysis-targeting chimeras (PROTACs) represent a new therapeutic modality involving selectively directing disease-causing proteins for degradation through proteolytic systems. Our ability to exploit targeted protein degradation (TPD) for antibiotic development remains nascent due to our limited understanding of which bacterial proteins are amenable to a TPD strategy. Here, we use a genetic system to model chemically-induced proximity and degradation to screen essential proteins in Mycobacterium smegmatis (Msm), a model for the human pathogen M.

View Article and Find Full Text PDF

Background: Nontuberculous mycobacteria are water-avid pathogens that are associated with nosocomial infections.

Objective: To describe the analysis and mitigation of a cluster of infections in cardiac surgery patients.

Design: Descriptive study.

View Article and Find Full Text PDF

Mycobacterium abscessus is an emerging pathogen causing lung infection predominantly in patients with underlying structural abnormalities or lung disease and is resistant to most frontline antibiotics. As the pathogenic mechanisms of M. abscessus in the context of the lung are not well-understood, we developed an infection model using air-liquid interface culture and performed a transposon mutagenesis and sequencing screen to identify genes differentially required for bacterial survival in the lung.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on a rapidly growing non-tuberculous mycobacterium (NTM) that causes various infections, which are hard to treat due to antibiotic resistance.
  • Researchers used transposon sequencing to identify ~362 essential genes for the bacterium's in vitro growth, discovering vulnerabilities that could guide new drug development.
  • One key finding is the importance of the enzyme PBP-lipo, which affects cell wall synthesis; targeting PBP-lipo can enhance the efficacy of certain antibiotics against the bacterium, making it a promising drug target for treating infections.
View Article and Find Full Text PDF

Although prokaryotic organisms lack traditional organelles, they must still organize cellular structures in space and time, challenges that different species solve differently. To systematically define the subcellular architecture of mycobacteria, we perform high-throughput imaging of a library of fluorescently tagged proteins expressed in Mycobacterium smegmatis and develop a customized computational pipeline, MOMIA and GEMATRIA, to analyze these data. Our results establish a spatial organization network of over 700 conserved mycobacterial proteins and reveal a coherent localization pattern for many proteins of known function, including those in translation, energy metabolism, cell growth and division, as well as proteins of unknown function.

View Article and Find Full Text PDF

The recalcitrance of mycobacteria to antibiotic therapy is in part due to its ability to build proteins into a multi-layer cell wall. Proper synthesis of both cell wall constituents and associated proteins is crucial to maintaining cell integrity, and intimately tied to antibiotic susceptibility. How mycobacteria properly synthesize the membrane-associated proteome, however, remains poorly understood.

View Article and Find Full Text PDF

Genomic dissection of antibiotic resistance in bacterial pathogens has largely focused on genetic changes conferring growth above a single critical concentration of drug. However, reduced susceptibility to antibiotics-even below this breakpoint-is associated with poor treatment outcomes in the clinic, including in tuberculosis. Clinical strains of Mycobacterium tuberculosis exhibit extensive quantitative variation in antibiotic susceptibility but the genetic basis behind this spectrum of drug susceptibility remains ill-defined.

View Article and Find Full Text PDF