DNA topoisomerase IIIα (TOP3A) is a highly conserved type IA topoisomerase critical for genome maintenance. Its deletion causes embryonic lethality in many organisms, which has hampered attempts to understand its physiological role. Recently, human subjects with TOP3A mutations were identified who display a Bloom's syndrome (BS)-like phenotype and mitochondrial dysfunction, consistent with TOP3A's roles in the nucleus, alongside the Bloom's helicase, and in mitochondria.
View Article and Find Full Text PDFDuring cytokinesis in human cells, a failure to resolve persistent DNA bridges that span the cell-division plane maintains the Aurora B-dependent abscission checkpoint in an active state. However, the molecular mechanism by which unresolved sister-chromatid bridging signals to this checkpoint is poorly defined. Here, we define an essential role for the Bloom's syndrome helicase, BLM, in signaling to the abscission-checkpoint machinery in response to replication stress through the conversion of dsDNA bridges into RPA-coated ssDNA.
View Article and Find Full Text PDFCell Death Discov
March 2025
The accurate control of DNA replication is crucial for the maintenance of genomic stability and cell viability. In this study, we explore the consequences of depleting the replicative DNA Polymerase α (POLA) in the wing disc of Drosophila melanogaster. Our findings reveal that reduced POLA activity induces DNA replication stress and activates the replication checkpoint in vivo.
View Article and Find Full Text PDFThe recently characterised human ZGRF1 helicase promotes genomic stability by facilitating DNA interstrand crosslink repair. In its absence, human cells exhibit greater sensitivity towards anti-cancer drugs such as mitomycin C and camptothecin. Moreover, the downregulation of expression is associated with increased survival in cancer patients.
View Article and Find Full Text PDFAccurate genome duplication requires a tightly regulated DNA replication program that relies on the fine regulation of origin firing. While the molecular steps involved in origin firing have been determined predominantly in budding yeast, the complexity of this process in human cells has yet to be fully elucidated. Here, we describe a straightforward proteomics approach to systematically analyze protein recruitment to the chromatin during induced origin firing in human cells.
View Article and Find Full Text PDFClin Transl Med
January 2025
Background: Cancer immunotherapy has transformed metastatic cancer treatment, yet challenges persist regarding therapeutic efficacy. RECQL4, a RecQ-like helicase, plays a central role in DNA replication and repair as part of the DNA damage response, a pathway implicated in enhancing efficacy of immune checkpoint inhibitor (ICI) therapies. However, its role in patient response to ICI remains unclear.
View Article and Find Full Text PDFDuring mitosis in eukaryotic cells, mechanical forces generated by the mitotic spindle pull the sister chromatids into the nascent daughter cells. How do mitotic chromosomes achieve the necessary mechanical stiffness and stability to maintain their integrity under these forces? Here we use optical tweezers to show that ions involved in physiological chromosome condensation are crucial for chromosomal stability, stiffness and viscous dissipation. We combine these experiments with high-salt histone depletion and theory to show that chromosomal elasticity originates from the chromatin fibre behaving as a flexible polymer, whereas energy dissipation can be explained by modelling chromatin loops as an entangled polymer solution.
View Article and Find Full Text PDFDNA Repair (Amst)
September 2024
DNA replication ensures the complete and accurate duplication of the genome. The traditional approach to analysing perturbation of DNA replication is to use chemical inhibitors, such as hydroxyurea or aphidicolin, that slow or stall replication fork progression throughout the genome. An alternative approach is to perturb replication at a single site in the genome that permits a more forensic investigation of the cellular response to the stalling or disruption of a replication fork.
View Article and Find Full Text PDFBlood Cancer J
January 2024
Plk1-interacting checkpoint helicase (PICH) is a DNA translocase involved in resolving ultrafine anaphase DNA bridges and, therefore, is important to safeguard chromosome segregation and stability. PICH is overexpressed in various human cancers, particularly in lymphomas such as Burkitt lymphoma, which is caused by MYC translocations. To investigate the relevance of PICH in cancer development and progression, we have combined novel PICH-deficient mouse models with the Eμ-Myc transgenic mouse model, which recapitulates B-cell lymphoma development.
View Article and Find Full Text PDFMitotic DNA synthesis (MiDAS) is an unusual form of DNA replication that occurs during mitosis. Initially, MiDAS was characterized as a process associated with intrinsically unstable loci known as common fragile sites that occurs after cells experience DNA replication stress (RS). However, it is now believed to be a more widespread "salvage" mechanism that is called upon to complete the duplication of any under-replicated genomic region.
View Article and Find Full Text PDFBloom's syndrome (BLM) protein is a known nuclear helicase that is able to unwind DNA secondary structures such as G-quadruplexes (G4s). However, its role in the regulation of cytoplasmic processes that involve RNA G-quadruplexes (rG4s) has not been previously studied. Here, we demonstrate that BLM is recruited to stress granules (SGs), which are cytoplasmic biomolecular condensates composed of RNAs and RNA-binding proteins.
View Article and Find Full Text PDFNat Struct Mol Biol
September 2023
SUMOylation regulates numerous cellular processes, but what represents the essential functions of this protein modification remains unclear. To address this, we performed genome-scale CRISPR-Cas9-based screens, revealing that the BLM-TOP3A-RMI1-RMI2 (BTRR)-PICH pathway, which resolves ultrafine anaphase DNA bridges (UFBs) arising from catenated DNA structures, and the poorly characterized protein NIP45/NFATC2IP become indispensable for cell proliferation when SUMOylation is inhibited. We demonstrate that NIP45 and SUMOylation orchestrate an interphase pathway for converting DNA catenanes into double-strand breaks (DSBs) that activate the G2 DNA-damage checkpoint, thereby preventing cytokinesis failure and binucleation when BTRR-PICH-dependent UFB resolution is defective.
View Article and Find Full Text PDFFront Cell Dev Biol
January 2023
The regulation of the cell division cycle is governed by a complex network of factors that together ensure that growing or proliferating cells maintain a stable genome. Defects in this system can lead to genomic instability that can affect tissue homeostasis and thus compromise human health. Variations in ploidy and cell heterogeneity are observed frequently in human cancers.
View Article and Find Full Text PDFNat Commun
November 2022
In anaphase, any unresolved DNA entanglements between the segregating sister chromatids can give rise to chromatin bridges. To prevent genome instability, chromatin bridges must be resolved prior to cytokinesis. The SNF2 protein PICH has been proposed to play a direct role in this process through the remodeling of nucleosomes.
View Article and Find Full Text PDFMol Cell
September 2022
Oncogene activation during tumorigenesis promotes DNA replication stress (RS), which subsequently drives the formation of cancer-associated chromosomal rearrangements. Many episodes of physiological RS likely arise due to conflicts between the DNA replication and transcription machineries operating simultaneously at the same loci. One role of the RAD51 recombinase in human cells is to protect replication forks undergoing RS.
View Article and Find Full Text PDFChromosomal instability (CIN) can be a driver of tumorigenesis but is also a promising therapeutic target for cancer associated with poor prognosis such as triple negative breast cancer (TNBC). The treatment of TNBC cells with defects in DNA repair genes with poly(ADP-ribose) polymerase inhibitor (PARPi) massively increases CIN, resulting in apoptosis. Here, we identified a previously unknown role of microRNA-449a in CIN.
View Article and Find Full Text PDFIn preparation for mitotic cell division, the nuclear DNA of human cells is compacted into individualized, X-shaped chromosomes. This metamorphosis is driven mainly by the combined action of condensins and topoisomerase IIα (TOP2A), and has been observed using microscopy for over a century. Nevertheless, very little is known about the structural organization of a mitotic chromosome.
View Article and Find Full Text PDFTopoisomerase IIIα is a type 1A topoisomerase that forms a complex with RMI1 and RMI2 called TRR in human cells. TRR plays an essential role in resolving DNA replication and recombination intermediates, often alongside the helicase BLM. While the TRR catalytic cycle is known to involve a protein-mediated single-stranded (ss)DNA gate, the detailed mechanism is not fully understood.
View Article and Find Full Text PDFAdv Sci (Weinh)
March 2022
The Plk1-interacting checkpoint helicase (PICH) protein localizes to ultrafine anaphase DNA bridges in mitosis along with a complex of DNA repair proteins. Previous studies show PICH deficiency-induced embryonic lethality in mice. However, the function of PICH that is required to suppress embryonic lethality in PICH-deficient mammals remains to be determined.
View Article and Find Full Text PDFStatins are prescribed to treat hypercholesterolemia and to reduce the risk of cardiovascular disease. However, statin users frequently report myalgia, which can discourage physical activity or cause patients to discontinue statin use, negating the potential benefit of the treatment. Although a proposed mechanism responsible for Statin-Associated Myopathy (SAM) suggests a correlation with impairment of mitochondrial function, the relationship is still poorly understood.
View Article and Find Full Text PDFReplication-blocking DNA lesions are particularly toxic to proliferating cells because they can lead to chromosome mis-segregation if not repaired prior to mitosis. In this study, we report that ZGRF1 null cells accumulate chromosome aberrations following replication perturbation and show sensitivity to two potent replication-blocking anticancer drugs: mitomycin C and camptothecin. Moreover, ZGRF1 null cells are defective in catalyzing DNA damage-induced sister chromatid exchange despite accumulating excessive FANCD2, RAD51, and γ-H2AX foci upon induction of interstrand DNA crosslinks.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
July 2020
Folate deprivation drives the instability of a group of rare fragile sites (RFSs) characterized by CGG trinucleotide repeat (TNR) sequences. Pathological expansion of the TNR within the locus perturbs DNA replication and is the major causative factor for fragile X syndrome, a sex-linked disorder associated with cognitive impairment. Although folate-sensitive RFSs share many features with common fragile sites (CFSs; which are found in all individuals), they are induced by different stresses and share no sequence similarity.
View Article and Find Full Text PDFDNA replication stress, a feature of human cancers, often leads to instability at specific genomic loci, such as the common fragile sites (CFSs). Cells experiencing DNA replication stress may also exhibit mitotic DNA synthesis (MiDAS). To understand the physiological function of MiDAS and its relationship to CFSs, we mapped, at high resolution, the genomic sites of MiDAS in cells treated with the DNA polymerase inhibitor aphidicolin.
View Article and Find Full Text PDF