Publications by authors named "Hyun-Ho Song"

The application of metabolomics to the water quality monitoring system, biological early warning system (BEWS), has been proposed; however, its development has not been attempted due to challenges such as high inter-individual variability and invasive sampling requirements in metabolomics applications. In this study, we employed an extracellular metabolomics (exo-metabolomics) approach using Daphnia magna to overcome these limitations and evaluate its utility in field river water conditions. From BEWS flow-through chambers, we collected exo-metabolites under ambient, copper exposure (0-80 μg/L), and post-exposure conditions.

View Article and Find Full Text PDF

Gut microbiota and their metabolites are known to influence the pathogenesis and progression of metabolic dysfunction-associated steatotic liver disease (MASLD). In this study, we investigated the potential beneficial effects of in modulating MASLD progression, beginning with clinical observations and followed by mechanistic validation in animal models. Human data (49 healthy controls and 129 MASLD patients) were collected to investigate gut microbial biomarkers.

View Article and Find Full Text PDF

Microglia, key immune cells in the brain, play a pivotal role in brain homeostasis and immune responses. Emerging evidence suggests their critical involvement in Alzheimer's disease (AD) pathogenesis and propagation. The propagation of AD pathology is related to the extracellular matrix of microglia, including extracellular vesicles (EV).

View Article and Find Full Text PDF

This study investigates the role of 25-hydroxycholesterol (25HC), a metabolite produced by cholesterol hydroxylase encoded by the Ch25h gene, in modulating microglial function and its potential implications in Alzheimer's disease (AD) pathology. We demonstrated that 25HC impairs microglial surveillance, reduces phagocytic capacity, and increases the production of pro-inflammatory cytokines. In vivo two-photon microscopy revealed that 25HC administration diminishes microglial response to brain lesions, while flow cytometry confirmed reduced phagocytosis in both in vivo and in vitro models.

View Article and Find Full Text PDF

Hepatic metabolism is an important process for evaluate the potential activity and toxicity of endocrine disrupting chemicals (EDCs) metabolites. Organization for Economic Co-operation and Development (OECD) has advocated the development of in vitro assays that mimic in vivo hepatic metabolism to eventually replace classical animal tests. In response to this need, we established a 3D mouse liver organoid (mLO) platform that mimics the animal model and is distinct from existing models.

View Article and Find Full Text PDF

Currently available skin grafts and skin substitutes for healing following third-degree burn injuries are fraught with complications, often resulting in long-term physical and psychological sequelae. Synthetic treatment that can promote wound healing in a regenerative manner would provide an off-the-shelf, non-immunogenic strategy to improve clinical care of severe burn wounds. Here, we demonstrate the vulnerary efficacy and accelerated healing mechanism of a dextran-based hydrogel in a third-degree porcine burn model.

View Article and Find Full Text PDF

A growing number of failing clinical trials for cancer therapy are substantiating the need to upgrade the current practice in culturing tumor cells and modeling tumor angiogenesis in vitro. Many attempts have been made to engineer vasculature in vitro by utilizing hydrogels, but the application of these tools in simulating in vivo tumor angiogenesis is still very new. In this review, we explore current use of hydrogels and their design parameters to engineer vasculogenesis and angiogenesis and to evaluate the angiogenic capability of cancerous cells and tissues.

View Article and Find Full Text PDF

Background: Chlorphenesin carbamate is a skeletal muscle relaxant approved in Korea for use in the treatment of pain and discomfort related to skeletal muscle trauma and inflammation.

Objective: The aim of this study was to assess the bioequivalence of a generic formulation of chlorphenesin carbamate at doses of 250 and 500 mg and 2 branded formulations of the same doses in healthy Korean adults.

Methods: This single-dose, randomized-sequence, open-label, 2-period crossover study was conducted in healthy Korean male and female volunteers.

View Article and Find Full Text PDF