Balancing ecology and human development has been a long and wide concern. The upper Yangtze River Basin (UYRB) of China has implemented large important ecological restoration projects since the last century. These restoration practices have changed land use patterns within the UYRB, consequently impacting the local carbon cycle.
View Article and Find Full Text PDFIncreased climate variability and extremes are unequivocal with unprecedented impacts on water resources and agriculture production systems. However, little is known about the impacts of climate extremes at the intra-seasonal level which remained largely unexplored. We investigated the coincidence of climate extremes with sensitive crop growth phases of wheat and rice in the Indus, Ganges and Brahmaputra (IGB) river basins of South Asia.
View Article and Find Full Text PDFSiloed-approaches may fuel the misguided development of hydropower and subsequent target-setting under the sustainable development goals (SDGs). While hydropower development in the Indus basin is vital to ensure energy security (SDG7), it needs to be balanced with water use for fulfilling food (SDG2) and water (SDG6) security. Existing methods to estimate hydropower potential generally focus on: only one class of potential, a methodological advance for either of hydropower siting, sizing, or costing of one site, or the ranking of a portfolio of projects.
View Article and Find Full Text PDFSafeguarding river ecosystems is a precondition for attaining the UN Sustainable Development Goals (SDGs) related to water and the environment, while rigid implementation of such policies may hamper achievement of food security. River ecosystems provide life-supporting functions that depend on maintaining environmental flow requirements (EFRs). Here we establish gridded process-based estimates of EFRs and their violation through human water withdrawals.
View Article and Find Full Text PDFWe performed a twofold intercomparison of river discharge regulated by dams under multiple meteorological forcings among multiple global hydrological models for a historical period by simulation. Paper II provides an intercomparison of river discharge simulated by five hydrological models under four meteorological forcings. This is the first global multimodel intercomparison study on dam-regulated river flow.
View Article and Find Full Text PDFOne of the main manifestations of climate change will be increased rainfall variability. How to deal with this in agriculture will be a major societal challenge. In this paper we explore flexibility in land use, through deliberate seasonal adjustments in cropped area, as a specific strategy for coping with rainfall variability.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2014
Humans directly change the dynamics of the water cycle through dams constructed for water storage, and through water withdrawals for industrial, agricultural, or domestic purposes. Climate change is expected to additionally affect water supply and demand. Here, analyses of climate change and direct human impacts on the terrestrial water cycle are presented and compared using a multimodel approach.
View Article and Find Full Text PDF