A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Flexible Strategies for Coping with Rainfall Variability: Seasonal Adjustments in Cropped Area in the Ganges Basin. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

One of the main manifestations of climate change will be increased rainfall variability. How to deal with this in agriculture will be a major societal challenge. In this paper we explore flexibility in land use, through deliberate seasonal adjustments in cropped area, as a specific strategy for coping with rainfall variability. Such adjustments are not incorporated in hydro-meteorological crop models commonly used for food security analyses. Our paper contributes to the literature by making a comprehensive model assessment of inter-annual variability in crop production, including both variations in crop yield and cropped area. The Ganges basin is used as a case study. First, we assessed the contribution of cropped area variability to overall variability in rice and wheat production by applying hierarchical partitioning on time-series of agricultural statistics. We then introduced cropped area as an endogenous decision variable in a hydro-economic optimization model (WaterWise), coupled to a hydrology-vegetation model (LPJmL), and analyzed to what extent its performance in the estimation of inter-annual variability in crop production improved. From the statistics, we found that in the period 1999-2009 seasonal adjustment in cropped area can explain almost 50% of variability in wheat production and 40% of variability in rice production in the Indian part of the Ganges basin. Our improved model was well capable of mimicking existing variability at different spatial aggregation levels, especially for wheat. The value of flexibility, i.e. the foregone costs of choosing not to crop in years when water is scarce, was quantified at 4% of gross margin of wheat in the Indian part of the Ganges basin and as high as 34% of gross margin of wheat in the drought-prone state of Rajasthan. We argue that flexibility in land use is an important coping strategy to rainfall variability in water stressed regions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4774993PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0149397PLOS

Publication Analysis

Top Keywords

cropped area
24
rainfall variability
16
ganges basin
16
variability
11
coping rainfall
8
seasonal adjustments
8
adjustments cropped
8
area ganges
8
flexibility land
8
inter-annual variability
8

Similar Publications