Publications by authors named "Hengxin Yu"

Electrocatalytic nitrogen oxidation emerges as a promising approach for the eco-friendly synthesis of nitrate, achieving remarkable progress in recent years. However, the precise oxidation mechanism remains poorly understood due to the complex interactions among the catalyst, electrolyte, and various intermediates, making it difficult to fully unravel the reaction pathways. Herein, we employed a Fe-TiO catalyst in electrolytes enriched with SO/HSO, significantly enhancing the nitrogen oxidation process through the in situ generation of *SOH.

View Article and Find Full Text PDF

Lead (Pb) contamination poses significant risks to human health and the environment, necessitating the development of sensitive and rapid detection methods. In this study, we present a DNA nanosphere-enhanced substrate strand-DNAzyme (DS-Sub-Dz) system for the efficient detection of Pb in both environmental and biological samples. The DS was constructed by annealing single-stranded DNA with four palindromic regions and extending sequences at the terminals, simplifying the process and reducing costs compared to traditional long DNA strands.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are pivotal in regulating biological processes such as cell proliferation and disease progression. Traditional miRNA detection methods like qRT-PCR and Northern blotting do not allow for monitoring dynamic changes in living cells and typically require invasive sample collection. This research presents a robust, non-enzymatic technique known as the Localized Hybridization Chain Reaction Amplifier (LHCRA), designed for real-time, in vivo miRNA imaging.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are crucial regulators in various pathological and physiological processes, and their misregulation is a hallmark of many diseases. In this study, we introduce an advanced DNA nanomachine using split-type molecular beacons (STMBs) for sensitive detection of miR-21, a key biomarker in cancer diagnostics. Utilizing an innovative STMB-mediated cascade strand displacement amplification (STMB-CSDA) technique, our approach offers a powerful means for the precise quantification of miRNAs, using miR-21 as a primary example.

View Article and Find Full Text PDF