In the beginning of 2020, the outbreak of the COVID-19 pandemic led to a crisis in which diagnostic methods for the genome detection of SARS-CoV-2 were urgently needed. Based on the very early publication of the basic principles for a diagnostic test for the genome detection of SARS-CoV-2, the first noncommercial laboratory-developed tests (LDTs) and commercial tests were introduced. As there was considerable uncertainty about the reliability and performance of different tests and different laboratories, INSTAND established external quality assessment (EQA) schemes for the detection of SARS-CoV-2 starting in April 2020.
View Article and Find Full Text PDFClin Chem Lab Med
April 2025
The main stakeholders in external quality assessment (EQA) programs are the participants, in whose interests these challenges are ultimately organised. EQA schemes in the medical field contribute to improving the quality of patient care by evaluating the analytical and diagnostic quality of laboratory and point-of-care tests (POCT) by independent third parties and, if necessary, pointing out erroneous measurement results and analytical or diagnostic improvement potential. Other benefits include the option of using EQA samples for other important laboratory procedures, such as the verification or validation of diagnostic medical devices (IVD-MDs), a contribution to the estimation of measurement uncertainty, a means of training and educating laboratory staff through educational EQA programmes or samples, or even for independent and documented monitoring of staff competence, such as on samples with unusual or even exceptional characteristics.
View Article and Find Full Text PDFClin Chem Lab Med
April 2025
External quality assessment (EQA) enhances patient safety through the evaluation of the quality of laboratory-based and point of care testing. Regulatory agencies and accreditation organizations utilize the results and the laboratory's response to them as part of assessing the laboratory's fitness to practice. In addition, where EQA samples are commutable and the assigned value has been determined using reference measurement procedures (RMPs), EQA data contributes to the verification of metrological traceability of assays as part of the post-market surveillance of diagnostic (IVD) medical devices (IVD-MDs).
View Article and Find Full Text PDFProviders of external quality assessment (EQA) programs evaluate data or information obtained and reported by participant laboratories using their routine procedures to examine properties or measurands in samples provided for this purpose. EQA samples must offer participants an equal chance to obtain accurate results, while being designed to provide results in clinically relevant ranges. It is the responsibility of the EQA provider to meet the necessary requirements for homogeneity, stability and some other properties of the EQA items in order to offer participants a fair, reliable and technically interesting EQA experience.
View Article and Find Full Text PDFBackground: Nucleic acid amplification tests (NAATs) assist in the diagnosis of numerous infectious diseases. They are typically sensitive and specific and can be quickly developed and adapted. Far more challenging is the development of standards to ensure NAATs are performing within specification; reference materials take time to develop and suitable reference measurement procedures (RMPs) have not been available.
View Article and Find Full Text PDFA cluster of 3 persons in Germany experienced hantavirus disease with renal insufficiency. Reverse transcription PCR-based genotyping revealed infection by Seoul hantavirus transmitted from pet rats. Seoul virus could be responsible for disease clusters in Europe, and infected pet rats should be considered a health threat.
View Article and Find Full Text PDFObjective: In routine clinical laboratories, severe acute respiratory syndrome coronavirus (SARS-CoV-2) infection is determined by reverse-transcription PCR (RT-PCR). In the COVID pandemic, a wide range of antigen detection tests were also in high demand. We investigated the correlation between SARS-CoV-2 NCap antigen and N gene concentration by analyzing samples from several INSTAND external quality assessment (EQA) schemes starting in March 2021.
View Article and Find Full Text PDFThe COVID-19 pandemic illustrated the important role of diagnostic tests, including lateral flow tests (LFTs), in identifying patients and their contacts to slow the spread of infections. INSTAND performed external quality assessments (EQA) for SARS-CoV-2 antigen detection with lyophilized and chemically inactivated cell culture supernatant of SARS-CoV-2 infected Vero cells. A pre-study demonstrated the suitability of the material.
View Article and Find Full Text PDFBackground: European legislation defines as "near-patient testing" (NPT) what is popularly and in other legislations specified as "point-of-care testing" (POCT). Systems intended for NPT/POCT use must be characterized by independence from operator activities during the analytic procedure. However, tools for evaluating this are lacking.
View Article and Find Full Text PDFDuring an epidemic, individual test results form the basis of epidemiological indicators such as case numbers or incidence. Therefore, the accuracy of measures derived from these indicators depends on the reliability of individual results. In the COVID-19 pandemic, monitoring and evaluating the performance of the unprecedented number of testing facilities in operation, and novel testing systems in use, was urgently needed.
View Article and Find Full Text PDFBackground: In May 2022, the monkeypox virus (MPXV) spread into non-endemic countries and the global community was quick to test the lessons learned from the SARS-CoV-2 pandemic. Due to its symptomatic resemblance to other diseases, like the non-pox virus varicella zoster (chickenpox), polymerase chain reaction methods play an important role in correctly diagnosing the rash-causing pathogen. INSTAND quickly established a new external quality assessment (EQA) scheme for MPXV and orthopoxvirus (OPXV) DNA detection to assess the current performance quality of the laboratory tests.
View Article and Find Full Text PDFBackground: There is an urgent need for harmonization between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) serology platforms and assays prior to defining appropriate correlates of protection and as well inform the development of new rapid diagnostic tests that can be used for serosurveillance as new variants of concern (VOC) emerge. We compared multiple SARS-CoV-2 serology reference materials to the WHO International Standard (WHO IS) to determine their utility as secondary standards, using an international network of laboratories with high-throughput quantitative serology assays. This enabled the comparison of quantitative results between multiple serology platforms.
View Article and Find Full Text PDFSARS-CoV-2, the cause of COVID-19, requires reliable diagnostic methods to track the circulation of this virus. Following the development of RT-qPCR methods to meet this diagnostic need in January 2020, it became clear from interlaboratory studies that the reported Ct values obtained for the different laboratories showed high variability. Despite this the Ct values were explored as a quantitative cut off to aid clinical decisions based on viral load.
View Article and Find Full Text PDFBackground: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA quantities, measured by reverse transcription quantitative PCR (RT-qPCR), have been proposed to stratify clinical risk or determine analytical performance targets. We investigated reproducibility and how setting diagnostic cutoffs altered the clinical sensitivity of coronavirus disease 2019 (COVID-19) testing.
Methods: Quantitative SARS-CoV-2 RNA distributions [quantification cycle (Cq) and copies/mL] from more than 6000 patients from 3 clinical laboratories in United Kingdom, Belgium, and the Republic of Korea were analyzed.
A candidate digital PCR (dPCR)-based reference measurement procedure for quantification of human cytomegalovirus (hCMV) was evaluated in 10 viral load comparison schemes (seven external quality assessment (EQA) and three additional training schemes) organized by INSTAND e.V. over four years (between September 2014 and March 2018).
View Article and Find Full Text PDFViral load monitoring in human immunodeficiency virus type 1 (HIV-1) infection is often performed using reverse transcription quantitative PCR (RT-qPCR) to observe response to treatment and identify the development of resistance. Traceability is achieved using a calibration hierarchy traceable to the International Unit (IU). IU values are determined using consensus agreement derived from estimations by different laboratories.
View Article and Find Full Text PDFReverse transcription (RT)-PCR, the principal diagnostic method applied in the world-wide struggle against COVID-19, is capable of detecting a single molecule of a viral genome. Correctly designed and practiced RT-PCR assays for SARS-CoV-2 should not cross react with similar but distinct viral pathogens, such as the coronaviruses associated with the common cold, and should perform with very high analytical sensitivity. This analytical performance is predicated on the ability of the method to detect the presence of the selected nucleic acid target, without detection of a false positive signal.
View Article and Find Full Text PDFBackground: In the pandemic, testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by real-time polymerase chain reaction is one of the pillars on which countermeasures are based. Factors limiting the output of laboratories interfere with the effectiveness of public health measures. Conserving reagents by pooling samples in low-probability settings is proposed but may cause dilution and loss of sensitivity.
View Article and Find Full Text PDFAntimicrobial drug resistance is one of the biggest threats to human health worldwide. Timely detection and quantification of infectious agents and their susceptibility to antimicrobial drugs are crucial for efficient management of resistance to antiviral drugs. In clinical settings, viral drug resistance is most often associated with prolonged treatment of chronic infections, and assessed by genotyping methods; e.
View Article and Find Full Text PDFQuantification of Cytomegalovirus (CMV) DNA is required for the initiation and monitoring of anti-viral treatment and the detection of viral resistance. However, due to the lack of standardisation of CMV DNA nucleic acid tests, it is difficult to set universal thresholds. In 2010, the 1st WHO International Standard for Human Cytomegalovirus for Nucleic Acid Amplification Techniques was released.
View Article and Find Full Text PDF