Publications by authors named "Gyeonghwa Heo"

The work presented here introduces a developed electrochemical biosensor for the salivary detection of matrix metalloproteinase-8 (MMP-8), utilizing a molecularly imprinted polymer (MIP) matrix based on poly(o-phenylenediamine). To enhance detection sensitivity and modulate impedance responses, graphene oxide (GO) is incorporated as an interlayer, providing a conductive and chemically stable matrix for precise electrochemical sensing. Density functional theory simulations confirm the formation of highly selective binding sites, further reinforcing the sensor's specificity for MMP-8 detection.

View Article and Find Full Text PDF

Micro-/nanotopographical cues have emerged as a practical and promising strategy for controlling cell fate and reprogramming, which play a key role as biophysical regulators in diverse cellular processes and behaviors. Extracellular biophysical factors can trigger intracellular physiological signaling via mechanotransduction and promote cellular responses such as cell adhesion, migration, proliferation, gene/protein expression, and differentiation. Here, we engineered a highly ordered nanowrinkled graphene oxide (GO) surface via the mechanical deformation of an ultrathin GO film on an elastomeric substrate to observe specific cellular responses based on surface-mediated topographical cues.

View Article and Find Full Text PDF

Rotating cylindrical stamp-based nanoimprint technique has many advantages, including the continuous fabrication of intriguing micro/nanostructures and rapid pattern transfer on a large scale. Despite these advantages, the previous nanoimprint lithography has rarely been used for producing sophisticated nanoscale patterns on a non-planar substrate that has many extended applications. Here, the simple integration of nanoimprinting process with a help of a transparent stamp wrapped on the cylindrical roll and UV optical source in the core to enable high-throughput pattern transfer, particularly on a fabric substrate is demonstrated.

View Article and Find Full Text PDF