New technologies for monitoring biodiversity such as environmental (e)DNA, passive acoustic monitoring, and optical sensors promise to generate automated spatiotemporal community observations at unprecedented scales and resolutions. Here, we introduce 'novel community data' as an umbrella term for these data. We review the emerging field around novel community data, focusing on new ecological questions that could be addressed; the analytical tools available or needed to make best use of these data; and the potential implications of these developments for policy and conservation.
View Article and Find Full Text PDF1. The establishment of new botanic gardens in tropical regions highlights a need for weed risk assessment tools suitable for tropical ecosystems. The relevance of plant traits for invasion into tropical rainforests has not been well studied.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2020
Tropical forest ecosystems are facing unprecedented levels of degradation, severely compromising habitat suitability for wildlife. Despite the fundamental role biodiversity plays in forest regeneration, identifying and prioritizing degraded forests for restoration or conservation, based on their wildlife value, remains a significant challenge. Efforts to characterize habitat selection are also weakened by simple classifications of human-modified tropical forests as intact vs.
View Article and Find Full Text PDFGlobal biodiversity indices are used to measure environmental change and progress toward conservation goals, yet few indices have been evaluated comprehensively for their capacity to detect trends of interest, such as declines in threatened species or ecosystem function. Using a structured approach based on decision science, we qualitatively evaluated 9 indices commonly used to track biodiversity at global and regional scales against 5 criteria relating to objectives, design, behavior, incorporation of uncertainty, and constraints (e.g.
View Article and Find Full Text PDFTrends Ecol Evol
January 2020
With the expansion in the quantity and types of biodiversity data being collected, there is a need to find ways to combine these different sources to provide cohesive summaries of species' potential and realized distributions in space and time. Recently, model-based data integration has emerged as a means to achieve this by combining datasets in ways that retain the strengths of each. We describe a flexible approach to data integration using point process models, which provide a convenient way to translate across ecological currencies.
View Article and Find Full Text PDFKnowing where species occur is fundamental to many ecological and environmental applications. Species distribution models (SDMs) are typically based on correlations between species occurrence data and environmental predictors, with ecological processes captured only implicitly. However, there is a growing interest in approaches that explicitly model processes such as physiology, dispersal, demography and biotic interactions.
View Article and Find Full Text PDFSpatiotemporal patterns in biological communities are typically driven by environmental factors and species interactions. Spatial data from communities are naturally described by stacking models for all species in the community. Two important considerations in such multispecies or joint species distribution models (JSDMs) are measurement errors and correlations between species.
View Article and Find Full Text PDFMultispecies occupancy models can estimate species richness from spatially replicated multispecies detection/non-detection survey data, while accounting for imperfect detection. A model extension using data augmentation allows inferring the number of species in the community, including those completely missed by sampling (i.e.
View Article and Find Full Text PDFDetecting exotic plant species is essential for invasive species management. By accounting for factors likely to affect species' detection rates (e.g.
View Article and Find Full Text PDFHabitat loss, fragmentation and degradation are key threats to the long-term persistence of carnivores, which are also susceptible to direct persecution by people. Integrating natural and social science methods to examine how habitat configuration/quality and human-predator relations may interact in space and time to effect carnivore populations within human-dominated landscapes will help prioritise conservation investment and action effectively.We propose a socioecological modelling framework to evaluate drivers of carnivore decline in landscapes where predators and people coexist.
View Article and Find Full Text PDFThe deep ocean is the largest and least-explored ecosystem on Earth, and a uniquely energy-poor environment. The distribution, drivers and origins of deep-sea biodiversity remain unknown at global scales. Here we analyse a database of more than 165,000 distribution records of Ophiuroidea (brittle stars), a dominant component of sea-floor fauna, and find patterns of biodiversity unlike known terrestrial or coastal marine realms.
View Article and Find Full Text PDFEnvironmental DNA (eDNA) sampling is prone to both false-positive and false-negative errors. We review statistical methods to account for such errors in the analysis of eDNA data and use simulations to compare the performance of different modelling approaches. Our simulations illustrate that even low false-positive rates can produce biased estimates of occupancy and detectability.
View Article and Find Full Text PDFIn a recent paper, Welsh, Lindenmayer and Donnelly (WLD) question the usefulness of models that estimate species occupancy while accounting for detectability. WLD claim that these models are difficult to fit and argue that disregarding detectability can be better than trying to adjust for it. We think that this conclusion and subsequent recommendations are not well founded and may negatively impact the quality of statistical inference in ecology and related management decisions.
View Article and Find Full Text PDFInvasive species are a cause for concern in natural and economic systems and require both monitoring and management. There is a trade-off between the amount of resources spent on surveying for the species and conducting early management of occupied sites, and the resources that are ultimately spent in delayed management at sites where the species was present but undetected. Previous work addressed this optimal resource allocation problem assuming that surveys continue despite detection until the initially planned survey effort is consumed.
View Article and Find Full Text PDFBiodiversity monitoring programs need to be designed so that population changes can be detected reliably. This can be problematical for species that are cryptic and have imperfect detection. We used occupancy modeling and power analysis to optimize the survey design for reptile monitoring programs in the UK.
View Article and Find Full Text PDFLarge carnivores living in tropical rainforests are under immense pressure from the rapid conversion of their habitat. In response, millions of dollars are spent on conserving these species. However, the cost-effectiveness of such investments is poorly understood and this is largely because the requisite population estimates are difficult to achieve at appropriate spatial scales for these secretive species.
View Article and Find Full Text PDFWith only 5% of the world's wild tigers (Panthera tigris Linnaeus, 1758) remaining since the last century, conservationists urgently need to know whether or not the management strategies currently being employed are effectively protecting these tigers. This knowledge is contingent on the ability to reliably monitor tiger populations, or subsets, over space and time. In the this paper, we focus on the 2 seminal methodologies (camera trap and occupancy surveys) that have enabled the monitoring of tiger populations with greater confidence.
View Article and Find Full Text PDF