Publications by authors named "Gozde Colak"

Purpose: Pectus deformity can cause cardiovascular, gastrointestinal, and genitourinary anomalies depending on the severity of the deformity, and this can affect the nutritional status of patients. This study aimed to investigate the effect of nutritional education on nutritional status and anthropometric measurements in patients with moderate pectus excavatum (PE).

Methods: This study included patients diagnosed with pectus disease between the ages of 9 and 16 years.

View Article and Find Full Text PDF

Hashimoto's thyroiditis is an autoimmune disease in which thyroid cells are attacked through cell-and antibody-mediated immune processes. A gluten-free diet reduces antibody concentration and regulates thyroid autoimmunization. Mediterranean diet reduces oxidative stress.

View Article and Find Full Text PDF

Pelabresib (CPI-0610), a BET protein inhibitor, is in clinical development for hematologic malignancies, given its ability to target NF-κB gene expression. The MANIFEST phase 1 study assessed pelabresib in patients with acute leukemia, high-risk myelodysplastic (MDS) syndrome, or MDS/myeloproliferative neoplasms (MDS/MPNs) (NCT02158858). Forty-four patients received pelabresib orally once daily (QD) at various doses (24-400 mg capsule or 225-275 mg tablet) on cycles of 14 d on and 7 d off.

View Article and Find Full Text PDF

Much research has been conducted regarding the impact of diet on the gut microbiota. However, the effects of dietary habits such as intermittent fasting are unclear. This study aimed to investigate the effect of intermittent fasting during Ramadan on the gut microbiota.

View Article and Find Full Text PDF
Article Synopsis
  • Janus kinase inhibitors (JAKis) like ruxolitinib are standard treatments for symptomatic myelofibrosis but can lead to treatment discontinuation due to disease progression and side effects.
  • * The combination of JAKis with BET inhibitors, such as pelabresib, has shown promise in clinical trials, improving spleen volume and total symptom scores in patients with myelofibrosis.
  • * An analysis comparing this combination therapy to standard JAKi monotherapy suggests that pelabresib with ruxolitinib may be more effective in treating treatment-naive patients with myelofibrosis.
View Article and Find Full Text PDF

Purpose: NF-κB, a transcription factor essential for inflammatory responses, is constitutively activated in many lymphomas. In preclinical studies, pelabresib (CPI-0610), an investigational (BET) bromodomain inhibitor, downregulated NF-κB signaling and demonstrated antitumor activity . Here we report the safety, pharmacokinetics, pharmacodynamics, and preliminary clinical activity from the first-in-human phase I study of pelabresib in patients with relapsed/refractory lymphomas (NCT01949883).

View Article and Find Full Text PDF
Article Synopsis
  • Standard therapy for myelofibrosis typically involves Janus kinase inhibitors (JAKis), but they have low response rates and high dropout rates, indicating a need for better treatments like pelabresib (CPI-0610), a bromodomain and extraterminal domain inhibitor.
  • In the MANIFEST phase II study, patients who had not previously received JAKis were treated with pelabresib and ruxolitinib, showing promising results: 68% of patients achieved a significant spleen volume reduction after 24 weeks, and many also experienced symptom relief and improved hemoglobin levels.
  • The combination therapy was generally well tolerated, with 95% of participants continuing treatment beyond 24 weeks,
View Article and Find Full Text PDF

Background/objecti̇ves: It is important to determine Dysfunctional eating behaviors such as dietary restraint and overeating tendencies in order to provide weight management and acquire the right habits in children. The purpose of this study was to test the reliability and validity of Dutch Eating Behaviour Questionnaire Children (DEBQ-C) with Turkish preadolescent children.

Materials/methods: This research included 440 preadolescents (9.

View Article and Find Full Text PDF

Myelofibrosis (MF) is a clonal myeloproliferative neoplasm, typically associated with disease-related symptoms, splenomegaly, cytopenias and bone marrow fibrosis. Patients experience a significant symptom burden and a reduced life expectancy. Patients with MF receive ruxolitinib as the current standard of care, but the depth and durability of responses and the percentage of patients achieving clinical outcome measures are limited; thus, a significant unmet medical need exists.

View Article and Find Full Text PDF

Here we report the identification and verification of a β-hydroxybutyrate-derived protein modification, lysine β-hydroxybutyrylation (Kbhb), as a new type of histone mark. Histone Kbhb marks are dramatically induced in response to elevated β-hydroxybutyrate levels in cultured cells and in livers from mice subjected to prolonged fasting or streptozotocin-induced diabetic ketoacidosis. In total, we identified 44 histone Kbhb sites, a figure comparable to the known number of histone acetylation sites.

View Article and Find Full Text PDF

Although the conserved AAA ATPase and bromodomain factor, ATAD2, has been described as a transcriptional co-activator upregulated in many cancers, its function remains poorly understood. Here, using a combination of ChIP-seq, ChIP-proteomics, and RNA-seq experiments in embryonic stem cells where Atad2 is normally highly expressed, we found that Atad2 is an abundant nucleosome-bound protein present on active genes, associated with chromatin remodelling, DNA replication, and DNA repair factors. A structural analysis of its bromodomain and subsequent investigations demonstrate that histone acetylation guides ATAD2 to chromatin, resulting in an overall increase of chromatin accessibility and histone dynamics, which is required for the proper activity of the highly expressed gene fraction of the genome.

View Article and Find Full Text PDF

The protein substrates of sirtuin 5-regulated lysine malonylation (Kmal) remain unknown, hindering its functional analysis. In this study, we carried out proteomic screening, which identified 4042 Kmal sites on 1426 proteins in mouse liver and 4943 Kmal sites on 1822 proteins in human fibroblasts. Increased malonyl-CoA levels in malonyl-CoA decarboxylase (MCD)-deficient cells induces Kmal levels in substrate proteins.

View Article and Find Full Text PDF

Transglutaminases (TGs) are multifunctional proteins having enzymatic and scaffolding functions that participate in regulation of cell fate in a wide range of cellular systems and are implicated to have roles in development of disease. This review highlights the mechanism of action of these proteins with respect to their structure, impact on cell differentiation and survival, role in cancer development and progression, and function in signal transduction. We also discuss the mechanisms whereby TG level is controlled and how TGs control downstream targets.

View Article and Find Full Text PDF

Lysine succinylation is a newly identified protein post-translational modification pathway present in both prokaryotic and eukaryotic cells. However, succinylation substrates and regulatory enzyme(s) remain largely unknown, hindering the biological study of this modification. Here we report the identification of 2,580 bacterial lysine succinylation sites in 670 proteins and 2,803 lysine acetylation (Kac) sites in 782 proteins, representing the first lysine succinylation dataset and the largest Kac dataset in wild-type E.

View Article and Find Full Text PDF

Stable Isotope Labeling by Amino acids in Cell culture (SILAC) is one of the in vivo metabolic labeling methods widely used for dynamic analysis of protein modifications. Here, we describe a general approach to applying SILAC, in combination with affinity enrichment of acetyllysine peptides and mass spectrometry, to study the dynamic changes of the Lysine acetylome in response to Sirt1. The method should be applicable to quantify changes to other post translational modifications in diverse cellular systems.

View Article and Find Full Text PDF

Transglutaminase 2 (TG2) is a widely expressed and multifunctional protein that modulates cell death/survival processes. We have previously shown that TG2 binds to hypoxia inducible factor 1β (HIF1β) and decreases the upregulation of HIF responsive genes; however, the relationship between these observations was not investigated. In this study, we investigated whether endogenous TG2 is sufficient to suppress HIF activity and whether the interaction between TG2 and HIF1β is required for this suppression.

View Article and Find Full Text PDF

Transglutaminase (TG) function facilitates several vascular processes and diseases. Although many of these TG-dependent vascular processes have been ascribed to the function of TG2, TG2 knockout mice have a mild vascular phenotype. We hypothesized that TGs besides TG2 exist and function in the vasculature.

View Article and Find Full Text PDF

Transglutaminase 2 (TG2) is a very multifunctional protein that is ubiquitously expressed in the body. It is a Ca(2+)-dependent transamidating enzyme, a GTPase, as well as a scaffolding protein. TG2 is the predominant form of transglutaminase expressed in the mammalian nervous system.

View Article and Find Full Text PDF

Transglutaminase 2 (TG2) is the most widely distributed member of the transglutaminase family with almost all cell types in the body expressing TG2 to varying extents. In addition to being widely expressed, TG2 is an extremely versatile protein exhibiting transamidating, protein disulphide isomerase and guanine and adenine nucleotide binding and hydrolyzing activities. TG2 can also act as a protein scaffold or linker.

View Article and Find Full Text PDF

Focal cerebral ischemia is among the most common type of stroke seen in patients. Due to the clinical significance there has been a prolonged effort to develop suitable animal models to study the events that unfold during ischemic insult. These techniques include transient or permanent, focal or global ischemia models using many different animal models, with the most common being rodents.

View Article and Find Full Text PDF

Transglutaminase 2 (TG2) is a hypoxia-responsive protein that is a calcium-activated transamidating enzyme, a GTPase and a scaffolding/linker protein. Upon activation TG2 undergoes a large conformational change, which likely affects not only its enzymatic activities but its non-catalytic functions as well. The focus of this study was on the role of transamidating activity, conformation and localization of TG2 in ischemic cell death.

View Article and Find Full Text PDF