Purpose: Intracranial hemorrhage (ICH) requires urgent treatment, and accurate and timely diagnosis is essential for improving outcomes. This pivotal clinical trial aimed to validate a deep learning algorithm for ICH detection and assess its clinical utility through a reader performance test.
Methods: Retrospective CT scans from patients with and without ICH were collected from a tertiary hospital.
Introduction: We developed and externally validated a fully automated algorithm using deep learning to detect large vessel occlusion (LVO) in computed tomography angiography (CTA).
Method: A total of 2,045 patients with acute ischemic stroke who underwent CTA were included in the development of our model. We validated the algorithm using two separate external datasets: one with 64 patients (external 1) and another with 313 patients (external 2), with ischemic stroke.
Background And Purpose: Multiple attempts at intracranial hemorrhage (ICH) detection using deep-learning techniques have been plagued by clinical failures. We aimed to compare the performance of a deep-learning algorithm for ICH detection trained on strongly and weakly annotated datasets, and to assess whether a weighted ensemble model that integrates separate models trained using datasets with different ICH improves performance.
Methods: We used brain CT scans from the Radiological Society of North America (27,861 CT scans, 3,528 ICHs) and AI-Hub (53,045 CT scans, 7,013 ICHs) for training.