Publications by authors named "Geraint A Tarling"

The Controls Over Mesopelagic Interior Carbon Storage (COMICS) cruise DY086 took place aboard the RRS Discovery in the South Atlantic during November and December, 2017. Physical, chemical, biogeochemical and biological data were collected during three visits to ocean observatory station P3, off the coast of South Georgia, during an austral spring bloom. A diverse range of equipment including CTD-rosette, Acoustic Doppler Current Profiler (ADCP), net deployments, marine snow catchers (MSCs), Stand Alone Pump System (SAPS) and PELAGRA Sediment Traps were used to produce a comprehensive, high-quality dataset.

View Article and Find Full Text PDF

Antarctic krill (Euphausia superba Dana) is a keystone species in the Southern Ocean ecosystem, with ecological and commercial significance. However, its vulnerability to climate change requires an urgent investigation of its adaptive potential to future environmental conditions. Historical museum collections of krill from the early 20th century represent an ideal opportunity to investigate how krill have changed over time due to predation, fishing and climate change.

View Article and Find Full Text PDF

A primary response of many marine ectotherms to warming is a reduction in body size, to lower the metabolic costs associated with higher temperatures. The impact of such changes on ecosystem dynamics and stability will depend on the resulting changes to community size-structure, but few studies have investigated how temperature affects the relative size of predators and their prey in natural systems. We utilise >3700 prey size measurements from ten Southern Ocean lanternfish species sampled across >10° of latitude to investigate how temperature influences predator-prey size relationships and size-selective feeding.

View Article and Find Full Text PDF
Article Synopsis
  • The Southern Ocean's upper-layer freshwater balance impacts global climate by influencing density and productivity, affecting heat and carbon exchange.
  • Researchers analyzed seawater oxygen isotopes from 2016 to 2021 to identify freshwater contributions from sea ice and melting icebergs.
  • Significant increases in sea ice melt and surface meteoric water were observed, emphasizing the role of a changing cryosphere in ocean freshening and potential climate effects.
View Article and Find Full Text PDF

Global access to accurate biodiversity data is a prerequisite to our progress in understanding biodiversity dynamics in ecosystems and any changes that are occurring. Despite recent major advancements in sharing data on the world's species, one of the remaining challenges relates to the mechanics of guiding data systematically from its provenance to end users. It can take considerable effort to orchestrate a successful sampling campaign, manage samples obtained in often extreme, remote conditions and to secure preservation of, and access to, the acquired data.

View Article and Find Full Text PDF

Scientific sampling of zooplankton in the Atlantic sector of the Southern Ocean has been undertaken since the 1920s, but few analyzed datasets are available to the research community. We provide a database of standardized data derived from samples collected by Bongo nets in this sector between 1996 and 2013, amounting to almost 94,000 individual records. The study region contains some of the highest levels of pelagic biomass in the Southern Ocean and is also undergoing rapid ocean warming and changing seasonality in sea-ice distribution.

View Article and Find Full Text PDF

Poleward range shifts are a global-scale response to warming, but these vary greatly among taxa and are hard to predict for individual species, localized regions or over shorter (years to decadal) timescales. Moving poleward might be easier in the Arctic than in the Southern Ocean, where evidence for range shifts is sparse and contradictory. Here, we compiled a database of larval Antarctic krill, Euphausia superba and, together with an adult database, it showed how their range shift is out of step with the pace of warming.

View Article and Find Full Text PDF

The changing Arctic environment is affecting zooplankton that support its abundant wildlife. We examined how these changes are influencing a key zooplankton species, Calanus finmarchicus, principally found in the North Atlantic but expatriated to the Arctic. Close to the ice-edge in the Fram Strait, we identified areas that, since the 1980s, are increasingly favourable to C.

View Article and Find Full Text PDF

Biological communities in the Arctic are changing through the climate-driven encroachment of subarctic species. This "Atlantification" extends to keystone Calanoid copepods, as the small-bodied Calanus finmarchicus increases in abundance in areas where it overlaps with larger Arctic congeners. The environmental factors that are facilitating this shift, whether related to optimal conditions in temperature or seasonality, remain unclear.

View Article and Find Full Text PDF

In the North Atlantic, euphausiids (krill) form a major link between primary production and predators including commercially exploited fish. This basin is warming very rapidly, with species expected to shift northwards following their thermal tolerances. Here we show, however, that there has been a 50% decline in surface krill abundance over the last 60 years that occurred in situ, with no associated range shift.

View Article and Find Full Text PDF

Indicators of oxidative stress and metabolic capacity are key factors in understanding the fitness of wild populations. In the present study, these factors were evaluated in the pelagic Southern Ocean taxa Antarctic krill (Euphausia superba) and myctophid fish (Electrona antarctica, Gymnoscopelus braueri and G. nicholsi) to establish a baseline record for future studies.

View Article and Find Full Text PDF

Biomagnification of mercury (Hg) in the Scotia Sea food web of the Southern Ocean was examined using the stable isotope ratios of nitrogen (δN) and carbon (δC) as proxies for trophic level and feeding habitat, respectively. Total Hg and stable isotopes were measured in samples of particulate organic matter (POM), zooplankton, squid, myctophid fish, notothenioid fish and seabird tissues collected in two years (austral summers 2007/08 and 2016/17). Overall, there was extensive overlap in δC values across taxonomic groups suggesting similarities in habitats, with the exception of the seabirds, which showed some differences, possibly due to the type of tissue analysed (feathers instead of muscle).

View Article and Find Full Text PDF

Myctophids are the most abundant fish group in the Southern Ocean pelagic ecosystem and are an important link in the Antarctic marine food web. Due to their major ecological role, evaluating the level of mercury (Hg) contamination in myctophids is important as a step towards understanding the trophic pathway of this contaminant. The concentrations of total Hg were determined in muscle, gill, heart and liver tissue of 9 myctophid species to quantify tissue partitioning variability between species.

View Article and Find Full Text PDF

The concentrations of total and proportions of organic mercury were measured in tissues of 355 individuals of 8 species of Southern Ocean squid (Alluroteuthis antarcticus, Bathyteuthis abyssicola, Filippovia knipovitchi, Galiteuthis glacialis, Gonatus antarcticus, Kondakovia longimana, Psychroteuthis glacialis and Slosarczykovia circumantarctica). Squid were caught around South Georgia (Scotia Sea) during 5 cruises, between the austral summers of 2006/07 to 2016/17 to evaluate temporal changes in bioaccumulation and tissue partitioning. Total mercury concentrations varied between 4 ng g and 804 ng g among all tissues.

View Article and Find Full Text PDF

Antarctic krill, Euphausia superba, have a circumpolar distribution but are concentrated within the south-west Atlantic sector, where they support a unique food web and a commercial fishery. Within this sector, our first goal was to produce quantitative distribution maps of all six ontogenetic life stages of krill (eggs, nauplii plus metanauplii, calyptopes, furcilia, juveniles, and adults), based on a compilation of all available post 1970s data. Using these maps, we then examined firstly whether "hotspots" of egg production and early stage nursery occurred, and secondly whether the available habitat was partitioned between the successive life stages during the austral summer and autumn, when krill densities can be high.

View Article and Find Full Text PDF

Hyperiid amphipods are predatory pelagic crustaceans that are particularly prevalent in high-latitude oceans. Many species are likely to have co-evolved with soft-bodied zooplankton groups such as salps and medusae, using them as substrate, for food, shelter or reproduction. Compared to other pelagic groups, such as fish, euphausiids and soft-bodied zooplankton, hyperiid amphipods are poorly studied especially in terms of their distribution and ecology.

View Article and Find Full Text PDF

The dissolution of the delicate shells of sea butterflies, or pteropods, has epitomised discussions regarding ecosystem vulnerability to ocean acidification over the last decade. However, a recent demonstration that the organic coating of the shell, the periostracum, is effective in inhibiting dissolution suggests that pteropod shells may not be as susceptible to ocean acidification as previously thought. Here we use micro-CT technology to show how, despite losing the entire thickness of the original shell in localised areas, specimens of polar species Limacina helicina maintain shell integrity by thickening the inner shell wall.

View Article and Find Full Text PDF

Antarctic krill form some of the highest concentrations of animal biomass observed in the world's oceans potentially due to their prolific ability to swarm. Determining the movement of Antarctic krill within swarms is important to identify drivers of their behaviour and their biogeochemical impact on their environment. We examined vertical velocity within approximately 2000 krill swarms through the combined use of a shipborne echosounder and an acoustic Doppler current profiler.

View Article and Find Full Text PDF

Early life stages of marine calcifiers are particularly vulnerable to climate change. In the Southern Ocean aragonite undersaturation events and areas of rapid warming already occur and are predicted to increase in extent. Here, we present the first study to successfully hatch the polar pteropod and observe the potential impact of exposure to increased temperature and aragonite undersaturation resulting from ocean acidification (OA) on the early life stage survival and shell morphology.

View Article and Find Full Text PDF

Predicting how species will respond to climate change is a growing field in marine ecology, yet knowledge of how to incorporate the uncertainty from future climate data into these predictions remains a significant challenge. To help overcome it, this review separates climate uncertainty into its three components (scenario uncertainty, model uncertainty, and internal model variability) and identifies four criteria that constitute a thorough interpretation of an ecological response to climate change in relation to these parts (awareness, access, incorporation, communication). Through a literature review, the extent to which the marine ecology community has addressed these criteria in their predictions was assessed.

View Article and Find Full Text PDF

The biogeographic response of oceanic planktonic communities to climatic change has a large influence on the future stability of marine food webs and the functioning of global biogeochemical cycles. Temperature plays a pivotal role in determining the distribution of these communities and ocean warming has the potential to cause major distributional shifts, particularly in polar regions where the thermal envelope is narrow. We considered the impact of long-term ocean warming on the spatial distribution of Southern Ocean mesozooplankton communities through examining plankton abundance in relation to sea surface temperature between two distinct periods, separated by around 60 years.

View Article and Find Full Text PDF

Rising oil and gas activities in northern high latitudes have led to an increased risk of petroleum pollution in these ecosystems. Further, seasonal high UV radiation at high latitudes may elevate photo-enhanced toxicity of petroleum pollution to marine organisms. Zooplanktons are a key ecological component of northern ecosystems; therefore, it is important to assess their sensitivity to potential pollutants of oil and gas activity.

View Article and Find Full Text PDF

Food webs in high-latitude oceans are dominated by relatively few species. Future ocean and sea-ice changes affecting the distribution of such species will impact the structure and functioning of whole ecosystems. Antarctic krill (Euphausia superba) is a key species in Southern Ocean food webs, but there is little understanding of the factors influencing its success throughout much of the ocean.

View Article and Find Full Text PDF

Most of Earth's surface is blue or white, but how much of each would depend on the time of observation. Our planet has been through phases of snowball (all frozen), greenhouse (all liquid seas) and icehouse (frozen and liquid). Even during current icehouse conditions, the extent of ice versus water has changed considerably between ice ages and interglacial periods.

View Article and Find Full Text PDF

Knowledge about sexual segregation and gender-specific, or indeed individual specialization, in marine organisms has improved considerably in the past decade. In this context, we tested the "Intersexual Competition Hypothesis" for penguins by investigating the feeding ecology of Gentoo penguins during their austral winter non-breeding season. We considered this during unusual environmental conditions (i.

View Article and Find Full Text PDF