Publications by authors named "Paco Bustamante"

The weaning mass of southern elephant seal pups (Mirounga leonina) is a key predictor of their first-year survival probability. However, variations in pup morphometric characteristics (length, mass and body condition i.e.

View Article and Find Full Text PDF

Anthropogenic activities have increased pressure on marine ecosystems through the continuous overflow of pollutants like mercury (Hg). Seabirds, particularly chicks, serve as effective local bioindicators of marine ecosystem health. This study assessed the influence of trophic ecology (inferred from δC and δN values) and colony location on Hg concentrations in the blood of yellow-legged (YLG, Larus michahellis) and Audouin's (AG, Ichthyaetus audouinii) gull chicks raised in natural (YLG, AG) vs.

View Article and Find Full Text PDF

Antarctic marine ecosystems are located far from industrial pollution sources, yet mercury (Hg) contamination remains an important threat to regional biodiversity. Seabirds occupy mid- to high trophic positions in Antarctic food webs, and can show high levels of Hg contamination due to biomagnification. Here, total Hg (THg) concentrations and stable isotopes of carbon (δC) and nitrogen (δN) were measured in red blood cells of brown skuas Stercorarius antarcticus lonnbergi (n = 44) and south polar skuas S.

View Article and Find Full Text PDF

The New Caledonian archipelago is an important hotspot of marine biodiversity. Due to mining activities, urbanization, and industrialization, significant amounts of contaminants are discharged into the lagoon. This study analysed the concentrations, spatial distribution, and potential drivers of 14 metallic compounds and trace elements (MTEs) and 22 persistent organic pollutants (POPs) in ~400 coral reef fish sampled from various sites around New Caledonia, across a gradient from mining centers to remote, uninhabited locations.

View Article and Find Full Text PDF

Mercury (Hg) contamination in marine ecosystems poses a significant environmental threat due to its high toxicity, persistence in the environment, and tendency to bioaccumulate in organisms and biomagnify in food webs. Understanding how Hg moves through these food webs is essential for assessing its ecological and health impacts. To investigate the trophic dynamics of Hg in Rayong Bay, Gulf of Thailand, we collected marine organisms from the pelagic and benthic food webs during 2022-2023 and analyzed the total mercury content (THg) in plankton (phytoplankton, zooplankton, and fish larvae) and in 81 marine animal species.

View Article and Find Full Text PDF

Mercury (Hg) contamination affects all ecosystems worldwide. Its deleterious effects on wildlife and humans encompass a diversity of impacts from individual to population levels. In the present study, we quantified Hg concentration across various tissues (blood, brain, muscle, and toe) of green toads (Bufotes viridis) and investigated the use of toe clips as a proxy of Hg concentration in internal tissues, including the brain.

View Article and Find Full Text PDF

Ocean acidification (OA) affects the physiology and behaviour of some marine organisms, impacting their development and metabolism during vulnerable early-life stages. Among them, the embryo of the cuttlefish develops for about two months in encapsulated eggs with harsh perivitelline conditions of hypoxia and hypercapnia, potentially worsened by OA. In this study, common cuttlefish Sepia officinalis embryos and juveniles, were exposed to five pH conditions (pH 8.

View Article and Find Full Text PDF

Mercury (Hg) is a non-essential element that bioaccumulates and biomagnifies in food webs through site-specific biogeochemical processes. Seabirds are valuable bioindicators of Hg contamination, yet certain regions, like the Portuguese coast, remain underrepresented. This study measured Hg concentrations in the blood of yellow-legged gulls (Larus michahellis), Audouin's gulls (Ichthyaetus audouinii), and Cory's shearwaters (Calonectris borealis) breeding along the Portuguese coastline.

View Article and Find Full Text PDF

Per- and polyfluoroalkyl substances (PFAS) are synthetic organofluorine compounds used in various products, which are highly durable in the environment and may pose risks to wildlife health. We investigated the blood cell concentrations of PFAS in breeding Scopoli's shearwaters (Calonectris diomedea) from three different colonies in the central and southern Mediterranean (Linosa, Malta, and La Maddalena). Shearwaters are flexible, high trophic level foragers, and foraging areas may differ according to sex and breeding stage.

View Article and Find Full Text PDF

Habitat degradation induced by human activities can exacerbate the spread of wildlife disease and could hinder the recovery of imperiled species. The endangered green turtle Chelonia mydas is impacted worldwide by fibropapillomatosis (FP), a neoplastic infectious disease likely triggered by the Scutavirus chelonidalpha5 with coastal anthropogenic stressors acting as cofactors in disease development. Here, we studied fibropapillomatosis dynamics and its demographic consequences using an 11-year capture-mark-recapture dataset in Anse du Bourg d'Arlet/Chaudière (ABAC) and Grande Anse d'Arlet (GA), two juvenile green turtle foraging grounds in Martinique, French West Indies.

View Article and Find Full Text PDF

Annual variation in prey availability can influence seabird diets and hence their exposure to pollutants, including mercury (Hg). Among seabirds, those species that scavenge carrion of marine mammals and other top predators may be especially vulnerable to accumulating high Hg concentrations. In this study, total Hg (THg) concentrations and carbon (δC) and nitrogen (δN) stable isotope values were measured in chick feathers of northern giant petrels Macronectes halli and southern giant petrels M.

View Article and Find Full Text PDF

Coastal lagoons are diverse habitats with significant ecological gradients, which provide crucial ecosystem services but face threats from human activities such as invasive species and pollution. Among the species inhabiting the lagoons, the critically endangered European eel (Anguilla anguilla) is an emblematic species strongly impacted by contamination and parasitism. Several indicators were developed to assess the quality of eel at a large geographic scale.

View Article and Find Full Text PDF

Coral reef fishes represent an invaluable source of macro- and micro-nutrients for tropical coastal populations. However, several potentially toxic compounds may jeopardize their contribution to food security. Concentrations of metallic compounds and trace elements (MTEs), and persistent organic pollutants (POPs, including pesticides and polychlorobiphenyls PCBs), totalizing 36 contaminants, were measured in coral reef fish from several Pacific islands.

View Article and Find Full Text PDF

Apex marine predators, such as toothed whales and large petrels and albatrosses, ingest mercury (Hg) primarily in the form of methylmercury (MeHg) via prey consumption, which they detoxify as tiemannite (HgSe). However, it remains unclear how lower trophic level marine predators, termed mesopredators, with elevated Hg concentrations detoxify MeHg and what chemical species are formed. To address this need, we used high energy-resolution X-ray absorption near edge structure spectroscopy paired with nitrogen (N) and Hg stable isotopes to identify the chemical forms of Hg, Hg sources, and species-specific δHg isotopic values in emperor penguin, a mesopredator feeding primarily on Antarctic silverfish.

View Article and Find Full Text PDF

Metallic trace elements (MTEs) constitute a major source of chemical pollution and represent a threat to aquatic ecosystems and organisms. Important variation in contamination may exist at a local scale in relation to the environment (hydrosystem, trophic ressources) and individual traits (age, sex). Heretofore, the factors influencing MTEs exposure of freshwater reptiles in temperate regions are not fully understood.

View Article and Find Full Text PDF

Mercury (Hg) is a global pollutant of major concern in marine and coastal environments. In the Mediterranean Sea, Hg concentrations in biota are higher than in other seas, even when seawater concentrations are similar. Seabirds, as marine top predators, can reflect Hg contamination on a large spatial scale.

View Article and Find Full Text PDF

The structure and functioning of ecosystems are largely determined by the interactions between species within a biological community. Among these interactions, species exhibiting similar vertical and spatial prey preferences can be identified, thereby belonging to the same trophic guild. Our study explored some trophic characteristics of a diverse megafaunal community (cetaceans, tunas, seabirds) in the Bay of Biscay (BoB).

View Article and Find Full Text PDF

Anthropogenic activity has disturbed the natural distribution and circulation of trace elements in the environment. This has led to increased background levels of numerous elements, causing global pollution. In this context, seabirds are relevant bioindicators of environmental contamination.

View Article and Find Full Text PDF

Mercury (Hg) is a naturally occurring highly toxic element which circulation in ecosystems has been intensified by human activities. Hg is widely distributed, and marine environments act as its main final sink. Seabirds are relevant bioindicators of marine pollution and chicks are particularly suitable for biomonitoring pollutants as they reflect contamination at short spatiotemporal scales.

View Article and Find Full Text PDF
Article Synopsis
  • This study is the first to report selenium (Se) isotopes in marine top predators, specifically focusing on giant petrels, and provides extensive characterization of Se isotopes in animals.
  • A new methodology was developed using hydride generation and mass spectrometry to analyze various internal organs of the seabirds, revealing different Se isotopic signatures among tissues.
  • The findings show that the liver has higher concentrations of heavier Se isotopes and indicate a strong correlation between the presence of selenoneine and shifts in Se isotopic composition, suggesting a promising avenue for further understanding Se dynamics in animals.
View Article and Find Full Text PDF

Coastal seabirds serve as sentinels of ecosystem health due to their vulnerability to contamination from human activities. However, our understanding on how contaminant burdens affect the physiological and health condition of seabirds is still scarce, raising the uncertainty on the species' vulnerability vs tolerance to environmental contamination. Here, we quantified 15 Trace Elements (TE) in the blood of gull (yellow-legged gull Larus michahellis and Audouin's gull Ichthyaetus audouinii) and shearwater (Cory's shearwater Calonectris borealis) adults, breeding in five colonies along the Portuguese coastline.

View Article and Find Full Text PDF

Seabirds are increasingly used as bioindicators for assessing the chemical contamination of marine ecosystems, including by mercury (Hg) worldwide. However, some geographical areas are still poorly documented, as metropolitan France that is home to 28 seabird species including the black-legged kittiwake Rissa tridactyla, in the part of the southern limit of the North Atlantic range of the species. Here, we investigated Hg contamination and trophic ecology of black-legged kittiwakes breeding in the harbour of Boulogne-sur-Mer, Northern France.

View Article and Find Full Text PDF

Heavy metal contamination in the environment is an increasingly pervasive threat to the long-term persistence of wildlife. As high trophic level consumers, crocodylians are at substantial risk from bioaccumulation of mercury (Hg). Despite that they are generally well-studied and the focal species of many conservation efforts around the world, little is known about Hg contamination levels in most crocodylians.

View Article and Find Full Text PDF

DNA metabarcoding and stable isotope analysis have significantly advanced our understanding of marine trophic ecology, aiding systematic research on foraging habits and species conservation. In this study, we employed these methods to analyse faecal and blood samples, respectively, to compare the trophic ecology of two Red-billed Tropicbird (Phaethonaethereus; Linnaeus, 1758) colonies on Mexican islands in the Pacific. Trophic patterns among different breeding stages were also examined at both colonies.

View Article and Find Full Text PDF

Background: Assessing the historical dynamics of key food web components is crucial to understand how climate change impacts the structure of Arctic marine ecosystems. Most retrospective stable isotopic studies to date assessed potential ecosystem shifts in the Arctic using vertebrate top predators and filter-feeding invertebrates as proxies. However, due to long life histories and specific ecologies, ecosystem shifts are not always detectable when using these taxa.

View Article and Find Full Text PDF