Plants often protect themselves from their own bioactive defense metabolites by storing them in less active forms. Consequently, plants also need systems allowing correct spatiotemporal reactivation of such metabolites, for instance under pathogen or herbivore attack. Via co-expression analysis with public transcriptomes, we determined that the model legume Medicago truncatula has evolved a two-component system composed of a β-glucosidase, denominated G1, and triterpene saponins, which are physically separated from each other in intact cells.
View Article and Find Full Text PDFPlants produce specialized metabolites to protect themselves from biotic enemies. Members of the Solanaceae family accumulate phenylpropanoid-polyamine conjugates (PPCs) in response to attackers while also maintaining a chemical barrier of steroidal glycoalkaloids (SGAs). Across the plant kingdom, biosynthesis of such defense compounds is promoted by jasmonate signaling in which clade IIIe basic helix-loop-helix (bHLH) transcription factors play a central role.
View Article and Find Full Text PDFVolatile compounds produced during ripening of strawberry are key determinants of fruit quality and consumer preference. Strawberry volatiles are largely esters which are synthesized by alcohol acyltransferases (AATs) and degraded by carboxylesterases (CXEs). Although CXE activity can have a marked influence on volatile contents in ripe strawberry fruits, CXE function and regulation in them are poorly known.
View Article and Find Full Text PDFTrends Biotechnol
September 2021
Molecular farming intends to use crop plants as biofactories for high value-added compounds following application of a wide range of biotechnological tools. In particular, the conversion of nonfood crops into efficient biofactories is expected to be a strong asset in the development of a sustainable bioeconomy. The 'nonfood' status combined with the high metabolic versatility and the capacity of high-yield cultivation highlight the plant genus Nicotiana as one of the most appropriate 'chassis' for molecular farming.
View Article and Find Full Text PDFOnly a few transcription factors have been described in the regulation of the strawberry (Fragaria x ananassa) fruit ripening process. Using a transcriptomic approach, we identified and functionally characterized FaDOF2, a DOF-type ripening-related transcription factor, which is hormonally regulated and specific to the receptacle, though high expression levels were also found in petals. The expression pattern of FaDOF2 correlated with eugenol content, a phenylpropanoid volatile, in both fruit receptacles and petals.
View Article and Find Full Text PDFFunct Integr Genomics
November 2016
Strawberry is an ideal model for studying the molecular biology of the development and ripening of non-climacteric fruits. Hormonal regulation of gene expression along all these processes in strawberries is still to be fully elucidated. Although auxins and ABA have been pointed out as the major regulatory hormones, few high-throughput analyses have been carried out to date.
View Article and Find Full Text PDFEugenol is a volatile phenylpropanoid that contributes to flower and ripe fruit scent. In ripe strawberry (Fragaria × ananassa) fruit receptacles, eugenol is biosynthesized by eugenol synthase (FaEGS2). However, the transcriptional regulation of this process is still unknown.
View Article and Find Full Text PDF