Publications by authors named "Francesca Soncin"

The placenta is one of the most diverse organs among eutherian mammals, and comparative placentation studies can reveal fundamental processes that support a successful pregnancy. A new study in PLOS Biology uses swine placental organoids and in vivo spatial transcriptomics to uncover key insights into placental cell diversity and evolution.

View Article and Find Full Text PDF

Cytotrophoblast (CTB) of the early gestation human placenta are bipotent progenitor epithelial cells, which can differentiate into invasive extravillous trophoblast (EVT) and multinucleated syncytiotrophoblast (STB). Trophoblast stem cells (TSC), derived from early first trimester placentae, have also been shown to be bipotential; however, their cell-of-origin has not been identified. In this study, we set out to probe the transcriptional diversity of early and late first trimester villous CTB (vCTB) and compare these to TSC.

View Article and Find Full Text PDF

Cytotrophoblast (CTB) of the early gestation human placenta are bipotent progenitor epithelial cells, which can differentiate into invasive extravillous trophoblast (EVT) and multinucleated syncytiotrophoblast (STB). Trophoblast stem cells (TSC), derived from early first trimester placentae, have also been shown to be bipotential. In this study, we set out to probe the transcriptional diversity of first trimester CTB and compare TSC to various subgroups of CTB.

View Article and Find Full Text PDF

The placenta plays a crucial role in pregnancy success. ΔNp63α (p63), a transcription factor from the TP53 family, is highly expressed in villous cytotrophoblasts (CTBs), the epithelial stem cells of the human placenta, and is involved in CTB maintenance and differentiation. We examined the mechanisms of action of p63 by identifying its downstream targets.

View Article and Find Full Text PDF
Article Synopsis
  • SARS-CoV-2 infection during pregnancy can lead to serious complications such as stillbirth and preterm birth, but direct transmission to the fetus is rare.
  • This study aimed to explore if maternal infection with SARS-CoV-2 caused specific placental injuries and whether these injuries varied based on the timing of infection and severity of the disease.
  • A cohort study at UC San Diego analyzed placental samples from infected pregnancies and compared them to control samples, identifying lesions and using advanced techniques to further investigate those associated with SARS-CoV-2.
View Article and Find Full Text PDF

Trophoblast stem cells (TSCs) are a proliferative multipotent population derived from the trophectoderm of the blastocyst, which will give rise to all the functional cell types of the trophoblast compartment of the placenta. The isolation and culture of TSCs in vitro represent a robust model to study mechanisms of trophoblast differentiation into mature cells both in successful and diseased pregnancy. Despite the highly conserved functions of the placenta, there is extreme variability in placental morphology, fetal-maternal interface, and development among eutherian mammals.

View Article and Find Full Text PDF

We previously established a trophoblast differentiation protocol from primed human pluripotent stem cells (PSC). To induce this lineage, we use a combination of Bone Morphogenetic Protein-4 (BMP4) and the WNT inhibitor IWP2. This protocol has enabled us to obtain a pure population of trophectoderm (TE)-like cells that could subsequently be terminally differentiated into syncytiotrophoblasts (STB) and extravillous trophoblasts (EVT).

View Article and Find Full Text PDF

SARS-CoV-2 infection during pregnancy has been associated with poor maternal and neonatal outcomes and placental defects. The placenta, which acts as a physical and immunological barrier at the maternal-fetal interface, is not established until the end of the first trimester. Therefore, localized viral infection of the trophoblast compartment early in gestation could trigger an inflammatory response resulting in altered placental function and consequent suboptimal conditions for fetal growth and development.

View Article and Find Full Text PDF
Article Synopsis
  • The BMP signaling pathway is crucial for early embryonic development and is particularly important in forming the epiblast and extraembryonic tissues like trophectoderm in both mice and humans.
  • This review focuses on BMP4 and its role in the development of trophectoderm during the early stages of embryogenesis in mice and humans.
  • It discusses how BMP4 can be used in laboratory techniques to convert different types of pluripotent stem cells into trophoblast stem cells, which could serve as a reliable and ethical source for studying placental development.
View Article and Find Full Text PDF

Trophoblast stem cells (TSCs) have recently been derived from human embryos and early-first-trimester placenta; however, aside from ethical challenges, the unknown disease potential of these cells limits their scientific utility. We have previously established a bone morphogetic protein 4 (BMP4)-based two-step protocol for differentiation of primed human pluripotent stem cells (hPSCs) into functional trophoblasts; however, those trophoblasts could not be maintained in a self-renewing TSC-like state. Here, we use the first step from this protocol, followed by a switch to newly developed TSC medium, to derive bona fide TSCs.

View Article and Find Full Text PDF

The Bone Morphogenetic Protein (BMP) pathway is involved in numerous developmental processes, including cell growth, apoptosis, and differentiation. In mouse embryogenesis, BMP signaling is a well-known morphogen for both mesoderm induction and germ cell development. Recent evidence points to a potential role in development of the extraembryonic compartment, including trophectoderm-derived tissues.

View Article and Find Full Text PDF

During pregnancy, conceptus-derived extravillous trophoblast (EVT) invades the endomyometrium, anchors the placenta to the maternal uterus, and remodels the spiral arteries in order to establish maternal blood supply to the fetoplacental unit. Recent reports have described early gestation EVT as polyploid and senescent. Here, we extend these reports by performing comprehensive profiling of both the genomic organization and transcriptome of first trimester and term EVT.

View Article and Find Full Text PDF

Despite the importance of understanding how variability across induced pluripotent stem cell (iPSC) lines due to non-genetic factors (clone and passage) influences their differentiation outcome, large-scale studies capable of addressing this question have not yet been conducted. Here, we differentiated 191 iPSC lines to generate iPSC-derived cardiovascular progenitor cells (iPSC-CVPCs). We observed cellular heterogeneity across the iPSC-CVPC samples due to varying fractions of two cell types: cardiomyocytes (CMs) and epicardium-derived cells (EPDCs).

View Article and Find Full Text PDF

Introduction: Placental insufficiency, arising from abnormal trophoblast differentiation and function, is a major cause of fetal growth restriction. Sirtuin-1 (Sirt1) is a ubiquitously-expressed NAD-dependent protein deacetylase which plays a key role in numerous cellular processes, including cellular differentiation and metabolism. Though Sirt1 has been widely studied, its role in placentation and trophoblast differentiation is unclear.

View Article and Find Full Text PDF

An increasing body of evidence points to significant spatio-temporal differences in early placental development between mouse and human, but a detailed comparison of placentae in these two species is missing. We set out to compare placentae from both species across gestation, with a focus on trophoblast progenitor markers. We found that CDX2 and ELF5, but not EOMES, are expressed in early post-implantation trophoblast subpopulations in both species.

View Article and Find Full Text PDF

Villous cytotrophoblasts are epithelial stem cells of the early human placenta, able to differentiate either into syncytiotrophoblasts in floating chorionic villi or extravillous trophoblasts (EVTs) at the anchoring villi. The signaling pathways regulating differentiation into these two lineages are incompletely understood. The bulk of placental growth and development in the first trimester occurs under low oxygen tension.

View Article and Find Full Text PDF

Appropriate self-renewal and differentiation of trophoblast stem cells (TSCs) are key factors for proper placental development and function and, in turn, for appropriate in utero fetal growth. To identify novel TSC-specific genes, we performed genome-wide expression profiling of TSCs, embryonic stem cells, epiblast stem cells, and mouse embryo fibroblasts, derived from mice of the same genetic background. Our analysis revealed a high expression of Sox21 in TSCs compared with other cell types.

View Article and Find Full Text PDF

The mouse is often used as a model for understanding human placentation and offers multiple advantages, including the ability to manipulate gene expression in specific compartments and to derive trophoblast stem cells, which can be maintained or differentiated in vitro. Nevertheless, there are numerous differences between the mouse and human placentas, only the least of which are structural. This review aims to compare mouse and human placentation, with a focus on signaling pathways involved in trophoblast lineage-specific differentiation.

View Article and Find Full Text PDF

Mouse embryonic stem cells (mESCs) and epiblast stem cells represent the naïve and primed pluripotent states, respectively. These cells self-renew via distinct signaling pathways and can transition between the two states in the presence of appropriate growth factors. Manipulation of signaling pathways has therefore allowed the isolation of novel pluripotent cell types such as Fibroblast growth factor, Activin and BIO-derived stem cells and IESCs.

View Article and Find Full Text PDF

The placenta is a transient organ that is necessary for proper fetal development. Its main functional component is the trophoblast, which is derived from extra-embryonic ectoderm. Little is known about early trophoblast differentiation in the human embryo, owing to lack of a proper in vitro model system.

View Article and Find Full Text PDF

N-glycosylation mediates many biological functions. Genetic defects in the N-glycosylation pathway cause >35 inherited human disorders called congenital disorders of glycosylation (CDGs). As a result, some N-glycosylation sites are unoccupied.

View Article and Find Full Text PDF