Signaling pathways in mouse and human trophoblast differentiation: a comparative review.

Cell Mol Life Sci

Department of Pathology, Sanford Consortium for Regenerative Medicine, University of California San Diego, 9500 Gilman Drive, MC 0695, La Jolla, CA, 92093, USA,

Published: April 2015


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The mouse is often used as a model for understanding human placentation and offers multiple advantages, including the ability to manipulate gene expression in specific compartments and to derive trophoblast stem cells, which can be maintained or differentiated in vitro. Nevertheless, there are numerous differences between the mouse and human placentas, only the least of which are structural. This review aims to compare mouse and human placentation, with a focus on signaling pathways involved in trophoblast lineage-specific differentiation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4366325PMC
http://dx.doi.org/10.1007/s00018-014-1794-xDOI Listing

Publication Analysis

Top Keywords

mouse human
12
signaling pathways
8
human placentation
8
mouse
4
pathways mouse
4
human
4
human trophoblast
4
trophoblast differentiation
4
differentiation comparative
4
comparative review
4

Similar Publications

Limited vascularization and ischemia are major contributors to the chronicity of wounds, such as ulcers and traumatic injuries, which impose significant medical, social, and economic burdens. These challenges are particularly pronounced in patients with spinal cord injury (SCI), a disabling condition associated with vascular dysfunction, infections, and impaired peripheral circulation, complicating the treatment of pressure injuries (PIs) and the success of reconstructive procedures like grafts and flaps. Regenerative medicine aims to address these issues by identifying effective cellular therapies to restore vascular beds.

View Article and Find Full Text PDF

Objective: Adipose-derived regenerative cells (ADRCs) are promising cell sources for damaged tissue regeneration. The efficacy of therapeutic angiogenesis with ADRC implantation in patients with critical limb ischemia has been demonstrated in clinical studies. There are several possible mechanisms in this process such as cytokines and microRNA.

View Article and Find Full Text PDF

IL12-based phototherapeutic nanoparticles through remodeling tumor-associated macrophages combined with immunogenic tumor cell death for synergistic cancer immunotherapy.

Biomater Sci

September 2025

Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, The Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China.

Various cancer therapeutic strategies have been designed for targeting tumor-associated macrophages (TAMs), but TAM reprogramming-based monotherapy is often clinically hindered, likely due to the lack of a coordinated platform to initiate T cell-mediated immunity. Herein, we fabricated reactive oxygen species (ROS)-responsive human serum albumin (HSA)-based nanoparticles (PEG/IL12-IA NPs) consisting of indocyanine green (ICG), arginine (Arg), and interleukin 12 (IL12). Upon laser irradiation, the nanoparticles were found to be able to dissociate, thus facilitating the release of IL12.

View Article and Find Full Text PDF

Atherosclerosis remains a leading cause of cardiovascular disease and mortality worldwide, despite advancements in statin therapies. Here, we aimed to identify potential anti-atherosclerosis drugs by an integrated approach combining network medicine-based prediction with empirical validation. Among the top drugs predicted by the preferred algorithm, mesalazine─a drug traditionally used to treat inflammatory bowel disease, was selected for in vivo validation in ApoE mouse model of atherosclerosis.

View Article and Find Full Text PDF