Publications by authors named "Fitz Gerald S Silao"

Candida albicans has the capacity to neutralize acidic growth environments by releasing ammonia derived from the catabolism of amino acids. The molecular components underlying alkalization and its physiological significance remain poorly understood. Here, we present an integrative model with the cytosolic NAD-dependent glutamate dehydrogenase (Gdh2) as the principal ammonia-generating component.

View Article and Find Full Text PDF

Candida albicans, the primary etiology of human mycoses, is well-adapted to catabolize proline to obtain energy to initiate morphological switching (yeast to hyphal) and for growth. We report that put1-/- and put2-/- strains, carrying defective Proline UTilization genes, display remarkable proline sensitivity with put2-/- mutants being hypersensitive due to the accumulation of the toxic intermediate pyrroline-5-carboxylate (P5C), which inhibits mitochondrial respiration. The put1-/- and put2-/- mutations attenuate virulence in Drosophila and murine candidemia models and decrease survival in human neutrophils and whole blood.

View Article and Find Full Text PDF

Nutrient uptake is essential for cellular life and the capacity to perceive extracellular nutrients is critical for coordinating their uptake and metabolism. Commensal fungal pathogens, e.g.

View Article and Find Full Text PDF
Article Synopsis
  • The text references a correction to a previously published article identified by the DOI: 10.1371/journal.ppat.1008328.
  • The correction likely addresses errors or updates related to the original publication.
  • Such corrections are common in academic literature to ensure the accuracy and reliability of scientific information.
View Article and Find Full Text PDF
Article Synopsis
  • Pathogens, like the fungus Candida albicans, need to change and hide from the immune system to survive and cause disease.
  • Researchers found that a special complex called HIR helps this fungus adapt by changing how its genes are controlled and accessed.
  • When HIR is not working, the fungus becomes faster at finding food and becomes more dangerous to the immune system, making it harder to fight off in infections.
View Article and Find Full Text PDF

Candida albicans cells depend on the energy derived from amino acid catabolism to induce and sustain hyphal growth inside phagosomes of engulfing macrophages. The concomitant deamination of amino acids is thought to neutralize the acidic microenvironment of phagosomes, a presumed requisite for survival and initiation of hyphal growth. Here, in contrast to an existing model, we show that mitochondrial-localized NAD+-dependent glutamate dehydrogenase (GDH2) catalyzing the deamination of glutamate to α-ketoglutarate, and not the cytosolic urea amidolyase (DUR1,2), accounts for the observed alkalization of media when amino acids are the sole sources of carbon and nitrogen.

View Article and Find Full Text PDF

Amino acids are among the earliest identified inducers of yeast-to-hyphal transitions in Candida albicans, an opportunistic fungal pathogen of humans. Here, we show that the morphogenic amino acids arginine, ornithine and proline are internalized and metabolized in mitochondria via a PUT1- and PUT2-dependent pathway that results in enhanced ATP production. Elevated ATP levels correlate with Ras1/cAMP/PKA pathway activation and Efg1-induced gene expression.

View Article and Find Full Text PDF

Candida tropicalis, a species closely related to Candida albicans, is an emerging fungal pathogen associated with high mortality rates of 40 to 70%. Like C. albicans and Candida dubliniensis, C.

View Article and Find Full Text PDF

Candida lusitaniae is an emerging fungal pathogen that infects immunocompromised patients including HIV/AIDS, cancer, and neonatal pediatric patients. Though less prevalent than other Candida species, C. lusitaniae is unique in its ability to develop resistance to amphotericin B.

View Article and Find Full Text PDF

Candida glabrata is an emerging human fungal pathogen that is frequently drug tolerant, resulting in difficulties in treatment and a higher mortality in immunocompromised patients. The calcium-activated protein phosphatase calcineurin plays critical roles in controlling drug tolerance, hyphal growth, and virulence in diverse fungal pathogens via distinct mechanisms involving survival in serum or growth at host temperature (37° and higher). Here, we comprehensively studied the calcineurin signaling cascade in C.

View Article and Find Full Text PDF

Candida dubliniensis is an emerging pathogenic yeast species closely related to Candida albicans and frequently found colonizing or infecting the oral cavities of HIV/AIDS patients. Drug resistance during C. dubliniensis infection is common and constitutes a significant therapeutic challenge.

View Article and Find Full Text PDF