Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Candida albicans, the primary etiology of human mycoses, is well-adapted to catabolize proline to obtain energy to initiate morphological switching (yeast to hyphal) and for growth. We report that put1-/- and put2-/- strains, carrying defective Proline UTilization genes, display remarkable proline sensitivity with put2-/- mutants being hypersensitive due to the accumulation of the toxic intermediate pyrroline-5-carboxylate (P5C), which inhibits mitochondrial respiration. The put1-/- and put2-/- mutations attenuate virulence in Drosophila and murine candidemia models and decrease survival in human neutrophils and whole blood. Using intravital 2-photon microscopy and label-free non-linear imaging, we visualized the initial stages of C. albicans cells infecting a kidney in real-time, directly deep in the tissue of a living mouse, and observed morphological switching of wildtype but not of put2-/- cells. Multiple members of the Candida species complex, including C. auris, are capable of using proline as a sole energy source. Our results indicate that a tailored proline metabolic network tuned to the mammalian host environment is a key feature of opportunistic fungal pathogens.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10621835PMC
http://dx.doi.org/10.1371/journal.ppat.1011677DOI Listing

Publication Analysis

Top Keywords

candida albicans
8
morphological switching
8
put1-/- put2-/-
8
proline
6
proline catabolism
4
catabolism key
4
key factor
4
factor facilitating
4
facilitating candida
4
albicans pathogenicity
4

Similar Publications

Herein, ruthenium nanoparticles (RuNPs) were synthesized using Tridax procumbens leaf extract as a reducing and stabilizing agent. The synthesis was optimized by adjusting temperature, leaf extract concentration, and reaction time. The synthesized RuNPs were characterized using UV-visible, XRD, EDAX, FTIR spectroscopy, SEM, and TEM, revealing uniform size and morphology.

View Article and Find Full Text PDF

Moh1 coordinates ROS-dependent apoptosis in genotoxic stress response of Candida albicans.

Fungal Biol

October 2025

Department of Pathogen Biology, School of Medicine, Nantong University, 226007, Nantong, Jiangsu, China. Electronic address:

Candida albicans employs apoptosis to maintain genomic stability under genotoxic stress, yet its regulatory mechanisms remain poorly defined. Here, we characterize the role of a putative pro-apoptotic factor Moh1 in C. albicans.

View Article and Find Full Text PDF

Enzymatic and mechanical disruption before successive photodynamic therapy targets the extracellular matrix of Candida albicans.

Photodiagnosis Photodyn Ther

September 2025

Laboratory of Applied Microbiology Department of Dental Materials and Prosthodontics, Universidade Estadual Paulista "Júlio de Mesquita Filho", Faculdade de Odontologia de Araraquara, Araraquara, SP, Brazil. Electronic address:

Objective: To evaluate whether pretreatment strategies targeting the extracellular matrix (ECM), such as DNase I and low-frequency ultrasound, enhance the efficacy of successive antimicrobial photodynamic therapy (aPDT) against Candida albicans biofilms and to assess the effects on biofilm components.

Methods: Forty-eight-hour C. albicans (ATCC 90028) biofilms were treated under four conditions: (I) aPDT [Photodithazine (PDZ) (25 mg/L) for 20 min + Light-Emitting Diode (LED) (660 nm, 18 J/cm²)], (II) DNase+aPDT [5 min with 20 U/mL DNase I before aPDT], (III) sonication+aPDT [7 W, 170-190 J before aPDT], (IV) Dn+So+aPDT.

View Article and Find Full Text PDF

Self-pumping Janus nanofiber membrane with pH monitoring capability, integrated with a drug-loaded fast-dissolving layer for enhanced chronic wound healing.

Colloids Surf B Biointerfaces

September 2025

State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China. Electronic address:

The emergence of antimicrobial resistance poses significant challenges in conventional antibiotic treatments for chronic wound infections, highlighting an urgent need for alternative therapeutic strategies. To address this issue, we developed a multifunctional electrospun nanofiber dressing co-loaded with anthocyanin (ATH) and asiaticoside (AS) that possesses antimicrobial activity. The tri-layer dressing contains three functional components: a hydrophilic polyacrylonitrile-anthocyanin (PAN-ATH) layer for pH monitoring, a hydrophobic polycaprolactone (PCL) layer for exudate management, and a water-soluble pullulan-Bletilla striata polysaccharide-asiaticoside (PUL-BSP-AS) layer.

View Article and Find Full Text PDF

Wound healing is often hindered by bacterial infection, oxidative stress, and bleeding. Traditional dressings cannot simultaneously regulate multiple microenvironments. To address the shortcomings of traditional dressings, this study constructed a dual-network photothermal responsive multifunctional hydrogel OBCTCu based on four natural ingredients, including Bletilla striata polysaccharide (BSP), chitosan (CS), tannic acid (TA), and Cu.

View Article and Find Full Text PDF