The wine industry generates high amounts of waste, posing current environmental and economic sustainability challenges. Grape pomace, mainly composed of seeds, skins, and stalks, contains significant amounts of bioactive compounds and constitutes the main solid residue of this industry. Various strategies are being explored for its valorization, from a circular economy perspective.
View Article and Find Full Text PDFOlive pomace is an agro-industrial waste product generated from the olive oil industry and constituted by bioactive compounds with potential applications in several industrial sectors. The purpose of this work was to evaluate the effects of electron beam (e-beam) radiation on olive pomace, specifically on phenolic compounds (by HPLC-DAD-ESI/MS) and the bioactive properties (antioxidant, antiproliferative, and antimicrobial activities) of crude olive pomace (COP) and extracted olive pomace (EOP) extracts. The amount of total flavonoid content and the reducing power of COP extracts were higher than those obtained for EOP extracts.
View Article and Find Full Text PDFThe efficiency of natural olive pomace extracts for enhancing the quality of fresh-cut apples was compared with commercial ascorbic acid and two different packaging films (biodegradable polylactic acid (PLA) and oriented polypropylene (OPP)) were tested. The composition of atmosphere inside the packages, the physicochemical parameters (firmness, weight loss and color), the microbial load, total phenolic content and antioxidant activity of fresh-cut apples were evaluated throughout 12 days of storage at 4 °C. After 12 days of refrigerated storage, a significant decrease in O was promoted in PLA films, and the weight loss of the whole packaging was higher in PLA films (5.
View Article and Find Full Text PDFUltrasound-assisted extraction (UAE) was used to recover hydroxytyrosol and tyrosol from olive pomace, a residue generated by the olive oil industry. The extraction process was optimized using response surface methodology (RSM), with processing time, ethanol concentration and ultrasonic power as the combined independent variables. The highest amounts of hydroxytyrosol (36 ± 2 mg g of extract) and tyrosol (14 ± 1 mg g of extract) were obtained after 28 min of sonication at 490 W using 7.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
May 2022
This study aims to study the kinetics and mechanisms of human adenovirus inactivation by electron beam. Human adenovirus type 5 (HAdV-5) was inoculated in two types of aqueous substrates (phosphate-buffered saline - PBS, domestic wastewater - WW) treated by electron beam at a dose range between 3 and 21 kGy. Samples were evaluated for virus infectivity, PCR amplification of fragments of HAdV-5 genome and abundance and antigenicity of the virion structural proteins.
View Article and Find Full Text PDFCompr Rev Food Sci Food Saf
January 2022
The wastes generated during the olive oil extraction process, even if presenting a negative impact for the environment, contain several bioactive compounds that have considerable health benefits. After suitable extraction and purification, these compounds can be used as food antioxidants or as active ingredients in nutraceutical and cosmetic products due to their interesting technological and pharmaceutical properties. The aim of this review, after presenting general applications of the different types of wastes generated from this industry, is to focus on the olive pomace produced by the two-phase system and to explore the challenging applications of the main individual compounds present in this waste.
View Article and Find Full Text PDFDue to the growing demand in society for healthier foods, scientific communities are searching and developing new ingredients. In this context, agro-industrial residues, which can have a negative impact on the environment, represent a natural source for bioactive compounds and their recovery can contribute to economic and environmental sustainability. Ionizing radiation is a clean and eco-friendly technology that can be used to improve the extraction of bioactive compounds.
View Article and Find Full Text PDFOlive pomace is an environmentally detrimental waste from olive oil industry, containing large amounts of bioactive compounds that might be used by the food industry. In this work, the effects of gamma radiation on phenolic compounds and bioactive properties (antioxidant, antimicrobial activities and hepatotoxicity) of Crude Olive Pomace (COP) and Extracted Olive Pomace (EOP) extracts were evaluated. Hydroxytyrosol was the main phenolic compound identified in both olive pomace extracts (24-25 mg/g).
View Article and Find Full Text PDFInt J Food Microbiol
September 2019
The environmental stability of enteric viruses and resistance to conventional treatments and common disinfectants, leads to their persistence in waters and food, causing serious implications on public health. Among non-thermal treatment methods, ionizing radiation is recognized as a useful and effective mean of disinfection. The objective of this study was to estimate the inactivation of enteric virus by gamma radiation in raw berry fruits, in order to evaluate the potential of this technology to be applied as a disinfection treatment.
View Article and Find Full Text PDFThe adsorption of four phenolic compounds (gallic acid, protocatechuic acid, vanillic acid and syringic acid) is investigated using a synthesized mesoporous carbon on both single and multi-component synthetic solutions. Some correlation of the adsorption capacity of the carbon and the nature of adsorbate could be made, except for gallic acid whose concentration decrease seems to be not exclusively due to adsorption but also to polymerization reaction. In the multi-component mixture, negative effects in the adsorption capacity are observed probably due to competition for the active centers of the adsorbent surface.
View Article and Find Full Text PDFIn this work, we study degradation of clofibric acid (CFA) in aqueous solution using either ionizing radiation from aCo source or a non-thermal plasma produced by discharges in the air above the solution. The results obtained with the two technologies are compared in terms of effectiveness of CFA degradation and its by-products. In both cases the CFA degradation follows a quasi-exponential decay in time well modelled by a kinetic scheme which considers the competition between CFA and all reaction intermediates for the reactive species generated in solution as well as the amount of the end product formed.
View Article and Find Full Text PDFA comprehensive assessment of the toxicity and antioxidant activity of cork boiling wastewater and the effects of gamma radiation on these parameters was performed. Antioxidant activity was evaluated using different methodologies as DPPH radical scavenging activity, reducing power and inhibition of β-carotene bleaching. The results have shown that gamma radiation can induce an increase on the antioxidant activity of cork boiling wastewater.
View Article and Find Full Text PDFAppl Environ Microbiol
September 2016
Unlabelled: Adenovirus is the most prevalent enteric virus in waters worldwide due to its environmental stability, which leads to public health concerns. Mitigation strategies are therefore required. The aim of this study was to assess the inactivation of human adenovirus type 5 (HAdV-5) by gamma radiation in aqueous environments.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
March 2015
PDMS-SiO2 hybrid materials obtained by sol-gel process have been extensively studied over the past years due to its promising biomedical applications namely as bone substitutes, catheters, and drug delivery devices. Regardless of the intended biomedical application, all these materials should go through a sterilization process before interfacing with a living structure. However, it is unclear whether they undergo structural and microstructural changes when subjected to sterilization by gamma irradiation.
View Article and Find Full Text PDF