The role of androgens in lung function is contentious, yet their effects on type II alveolar epithelial cells (AECII)-derived lung cancer models remain underexplored. This study reveals that androgens provide survival advantages to A549 cells, a male lung adenocarcinoma AECII cell line, by promoting wound healing and enhancing stress resilience. We demonstrated that testosterone and dihydrotestosterone (DHT) significantly upregulate aquaporin 3 (AQP3) through androgen receptor (AR) accumulation and ERK pathway activation, thereby mitigating cell death under oxidative stress induced by hydrogen peroxide and cyclic cell-stretching.
View Article and Find Full Text PDFCardiomyocytes are essential models for cardiac disease modeling, drug development, and regenerative therapies. Specifically, human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have emerged as widely used cellular models with high reproducibility. However, cardiomyocytes generated in vitro tend to remain immature and insufficient in replicating the electrophysiological and mechanical functions of adult cardiomyocytes, limiting the clinical and experimental applications of these models.
View Article and Find Full Text PDFCell culture substrates designed for myocardial applications are pivotal in promoting the maturation and functional integration of cardiomyocytes. However, traditional in vitro models often inadequately mimic the diverse biochemical signals and electrophysiological properties of mature cardiomyocytes. Herein, we propose the application of monolayer graphene, transferred onto SU-8 cantilevers integrated with a microelectrode array, to evaluate its influence on the structural, functional, and electro-mechano-physiological properties of cardiomyocytes.
View Article and Find Full Text PDFPlant Physiol Biochem
December 2024
The light irradiation to the plant chloroplasts drives NADPH and ATP synthesis in the stroma via the electron transport chains within the thylakoid membranes. Conventional methods for assessing photosynthetic light reactions are often invasive or require specific conditions. While detection markers do not significantly affect plant growth itself, developing a method for the real-time and non-invasive detection of NADPH is a highly impactful and important research area in plant physiology and biochemistry.
View Article and Find Full Text PDFGiven their pervasiveness in the environment, particularly in aquatic ecosystems, plastics are posing a growing concern worldwide. Many vertebrates and invertebrates in marine, freshwater, and terrestrial ecosystems exhibit microplastic (MP) uptake and accumulation. Some studies have indicated the fatal impacts of MPs on animals and their possible transfer through food chains.
View Article and Find Full Text PDFIntegr Zool
November 2024
Preclinical drug screening for cardiac toxicity has traditionally relied on observing changes in cardiomyocytes' electrical activity, primarily through invasive patch clamp techniques or non-invasive microelectrode arrays (MEA). However, relying solely on field potential duration (FPD) measurements for electrophysiological assessment can miss the full spectrum of drug-induced toxicity, as different drugs affect cardiomyocytes through various mechanisms. A more comprehensive approach, combining field potential and contractility measurements, is essential for accurate toxicity profiling, particularly for drugs targeting contractile proteins without affecting electrophysiology.
View Article and Find Full Text PDFCorrection for 'Quantitative assessment of cardiomyocyte mechanobiology through high-throughput cantilever-based functional well plate systems' by Jongyun Kim , , 2023, , 5133-5143, https://doi.org/10.1039/D3AN01286G.
View Article and Find Full Text PDFCorrection for 'Enhanced cardiomyocyte structural and functional anisotropy through synergetic combination of topographical, conductive, and mechanical stimulation' by Jongyun Kim , , 2023, , 4540-4551, https://doi.org/10.1039/D3LC00451A.
View Article and Find Full Text PDFThe development of efficient tools for predicting drug-induced cardiotoxicity in the preclinical phase would greatly benefit the drug development process. This study presents an SU-8 cantilever integrated with a single-crystal silicon strain sensor to enhance force sensitivity in toxicity screening methods based on changes in the contraction force of cardiomyocytes. The proposed cantilever device enables real-time measurements of cardiomyocytes contraction force with high sensitivity, thereby facilitating the assessment of drug cardiotoxicity.
View Article and Find Full Text PDFDrug-induced cardiotoxicity, a significant concern in the pharmaceutical industry, often results in the withdrawal of drugs from the market. The main cause of drug-induced cardiotoxicity is the use of immature cardiomyocytes during drug screening procedures. Over time, several methods such as topographical, conductive, and mechanical stimulation have been proposed to enhance both maturation and contractile properties of these cardiomyocytes.
View Article and Find Full Text PDFProper regulation of the cell culture environment is essential for disease modelling and drug toxicity screening. The main limitation of well plates used for cell culture is that they cannot accurately maintain energy sources and compounds needed during cell growth. Herein, to understand the importance of perfusion in cardiomyocyte culture, changes in contractile force and heart rate during cardiomyocyte growth are systematically investigated, and the results are compared with those of a perfusion-free system.
View Article and Find Full Text PDFDrug-induced cardiotoxicity is a potentially severe side effect that can alter the contractility and electrophysiology of the cardiomyocytes. Cardiotoxicity is generally assessed through animal models using conventional drug screening platforms. Despite significant developments in drug screening platforms, the difficulty in measuring electrophysiology and contractile profile together affects the investigation of cardiotoxicity in potential drugs.
View Article and Find Full Text PDFDue to their immature morphology and functional immaturity, cardiomyocytes have limited use as an in vitro disease model of the native heart. Mechanical stimulation induces structural growth in cardiomyocytes in vitro by addressing the electrical-mechanical interactions between the tissues. However, current in vitro models are restricted in their capacity to replicate the milieu observed in natural myocardium.
View Article and Find Full Text PDFNanoplastics are global pollutants that have been increasingly released into the environment following the degradation process of industrial and consumer products. These tiny particles have been reported to adversely affect various organs in the body, including the heart. Since it is probable that the less-developed hearts of newborn offspring are more vulnerable to nanoplastic insult during the infant feeding compared with mature hearts of adults, the acute effects of nanoplastics on the collective contractility of neonatal cardiomyocytes are to be elucidated.
View Article and Find Full Text PDFBottom-up micropatterning or nanopatterning can be viewed as the localization of target molecules to the desired area of a surface. A majority of these processes rely on the physical adsorption of ink-like molecules to the paper-like surface, resulting in unstable immobilization of the target molecules owing to their noncovalent linkage to the surface. Herein, successive single nick-sealing facilitated the covalent immobilization of individual DNA molecules at defined positions on a dendron-coated silicon surface using atomic force microscopy.
View Article and Find Full Text PDFHerein, we propose a novel biosensing platform involving an array of 64 hybrid cantilevers and integrated strain sensors to measure the real-time contractility of the drug-treated cardiomyocytes (CMs). The strain sensor is integrated on the polyimide (PI) cantilever. To improve the strain sensor reliability and construct the engineered cardiac tissue, the nanogroove-patterned polydimethylsiloxane (PDMS) encapsulation layer is bonded on the PI cantilever.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
January 2021
Over the years, several in-vitro biosensing platforms have been developed for enhancing the maturation of the cultured cells. However, most of the proposed platforms met with limited success due to its inability for live-cell imaging, complicated fabrication, and not being advantageous from an economic perspective due to a higher price. To overcome the drawbacks of the current state-of-the-art, herein, we developed a next-generation stage-top incubator (STI) incorporated with nano grooves patterned PDMS diaphragm (NGPPD).
View Article and Find Full Text PDFCyclic stretch applied to cells induces the reorganization of stress fibers. However, the correlation between the reorganization of stress fiber subtypes and strain-dependent responses of the cytoplasm and nucleus has remained unclear. Here, we investigated the dynamic involvement of stress fiber subtypes in the orientation and elongation of cyclically stretched epithelial cells.
View Article and Find Full Text PDFThere are no clear guidelines on the compatibility between endoclips that remain in the gastrointestinal (GI) tract and magnetic resonance imaging (MRI). The purpose of this study was to investigate the effect of 3T (T) MRI on endoclips placed in excised pig tissues. Two types of endoclips were assessed: Olympus EZ (HX-610-135L) and QuickClip Pro (HZ-202LR).
View Article and Find Full Text PDFPolystyrene nanoparticles (PS-NPs) derived from both environmental and occupational sources are an important class of ultrafine particles associated with human pulmonary disorders. The effects of surface charges of particle internalization and toxicity to alveolar cells, especially under conditions comparable to those found during breathing, have not been examined. Here, we applied cyclic stretches (CS) to human alveolar cells during nanoparticle exposure and show an enhanced accumulation of positively charged polystyrene nanoparticles as compared to similar negatively charged particles.
View Article and Find Full Text PDFThe primary cilium acts as a sensory organelle with diverse receptors and ion channels to detect extracellular cues and regulate cellular functions, including cell migration. The migration of mesenchymal stem cells (MSCs) to bone remodeling sites is important for bone homeostasis. Recently, we have suggested that osteopontin (OPN) is a significant chemoattractant in MSC migration to bone remodeling sites.
View Article and Find Full Text PDFTo date, numerous biosensing platforms have been developed for assessing drug-induced cardiac toxicity by measuring the change in contractile force of cardiomyocytes. However, these low sensitivity, low-throughput, and time-consuming processes are severely limited in their real-time applications. Here, we propose a cantilever device integrated with a polydimethylsiloxane (PDMS)-encapsulated crack sensor to measure cardiac contractility.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
February 2020
Over the past few years, cardiac tissue engineering has undergone tremendous progress. Various in vitro methods have been developed to improve the accuracy in the result of drug-induced cardiac toxicity screening. Herein, we propose a novel SU-8 cantilever integrated with an electromechanical-stimulator to enhance the maturation of cultured cardiac cells.
View Article and Find Full Text PDF