Plants (Basel)
May 2023
Pulses have gained popularity over the past few decades due to their use as a source of protein in food and their favorable impact on soil fertility. Despite being essential to modern agriculture, these species face a number of challenges, such as agronomic crop management and threats from plant seed pathogens. This review's goal is to gather information on the distribution, symptomatology, biology, and host range of seedborne pathogens.
View Article and Find Full Text PDFDuring the last three years, more than 300 landraces belonging to different plant species have been the main focus of an Italian valorization research project (AgroBiodiversità Campana, ABC) aiming at analyzing, recovering, preserving, and collecting local biodiversity. In this context, phytosanitary investigation plays a key role in identifying potential threats to the preservation of healthy seeds in gene banks and the successful cultivation of landraces. The surveillance carried out in this study, in addition to highlighting the expected presence of common species-specific pathogens such as in peas, in broad beans, and , pv.
View Article and Find Full Text PDFThe diagnostic survey of seedborne fungal pathogens is fundamental for symptomless material stored in gene banks to avoid the diffusion of pathogens by germplasm distribution and propagation. In this work, seeds of Southern Italian landraces of the common bean ( L.) belonging to the gene bank at CREA (Italy) were inspected to assess their phytosanitary status.
View Article and Find Full Text PDFClimate change has led to the spread of plant pathogens in novel environments, causing dramatic crop losses and economic damage. represents a massive fungal family, containing a huge number of plant pathogens, which are able to infect several hosts. Among them, is a necrotrophic fungus, responsible for several plant diseases, including the soft stem rot of common bean, crown rot on strawberry and charcoal rot of several legumes.
View Article and Find Full Text PDFEncrypted peptides have been recently found in the human proteome and represent a potential class of antibiotics. Here we report three peptides derived from the human apolipoprotein B (residues 887-922) that exhibited potent antimicrobial activity against drug-resistant , , and both and in an animal model. The peptides had excellent cytotoxicity profiles, targeted bacteria by depolarizing and permeabilizing their cytoplasmic membrane, inhibited biofilms, and displayed anti-inflammatory properties.
View Article and Find Full Text PDFThe effectiveness of three novel "host defence peptides" identified in human Apolipoprotein B (ApoB) as novel antimicrobial and antibiofilm agents to be employed in food industry is reported. ApoB-derived peptides have been found to exert significant antimicrobial effects towards Salmonella typhimurium ATCC® 14028 and Salmonella enteritidis 706 RIVM strains. Furthermore, they have been found to retain antimicrobial activity under experimental conditions selected to simulate those occurring during food storage, transportation and heat treatment, and have been found to be endowed with antibiofilm properties.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
March 2021
Therapeutic options to treat invasive fungal infections are still limited. This makes the development of novel antifungal agents highly desirable. Naturally occurring antifungal peptides represent valid candidates, since they are not harmful for human cells and are endowed with a wide range of activities and their mechanism of action is different from that of conventional antifungal drugs.
View Article and Find Full Text PDFBiochim Biophys Acta Gen Subj
February 2021
Background Microbial transglutaminase (mTG) has been successfully used to produce site-specific protein conjugates derivatized at the level of Gln and/or Lys residues for different biotechnological applications. Here, a recombinant peptide identified in human apolipoprotein B sequence, named r(P)ApoB and endowed with antimicrobial activity, was studied as a possible acyl acceptor substrate of mTG with at least one of the six Lys residues present in its sequence. Methods The enzymatic crosslinking reaction was performed in vitro using N,N-dimethylcasein, substance P and bitter vetch (Vicia ervilia) seed proteins, well known acyl donor substrates in mTG-catalyzed reactions.
View Article and Find Full Text PDFChronic respiratory infections are the main cause of morbidity and mortality in cystic fibrosis (CF) patients, and are characterized by the development of multidrug resistance (MDR) phenotype and biofilm formation, generally recalcitrant to treatment with conventional antibiotics. Hence, novel effective strategies are urgently needed. Antimicrobial peptides represent new promising therapeutic agents.
View Article and Find Full Text PDFIn this study, the efficacy of fruit acetonic extract on human MDR cancer cells was tested for the first time, and it was demonstrated that the fruit extract is effective on both sensitive and resistant tumor cells. The effects of extract on bacterial biofilm were also examined for the first time. By crystal violet assays and confocal microscopy analyses, it was demonstrated that the plant extract is able to strongly inhibit biofilm formation of both sensitive and resistant bacterial strains.
View Article and Find Full Text PDFCationic Host Defense Peptides (HDPs) are endowed with a broad variety of activities, including direct antimicrobial properties and modulatory roles in the innate immune response. Even if it has been widely demonstrated that bacterial membrane represents the main target of peptide antimicrobial activity, the molecular mechanisms underlying membrane perturbation by HDPs have not been fully clarified yet. Recently, two cryptic HDPs have been identified in human apolipoprotein B and found to be endowed with a broad-spectrum antimicrobial activity, and with anti-biofilm, wound healing and immunomodulatory properties.
View Article and Find Full Text PDFAmong bioactive peptides, cationic antimicrobial peptides (AMPs), also referred to as host defence peptides (HDPs), are valuable tools to treat infections, being able to kill a wide variety of microbes directly and/or modulate host immunity. HDPs have great therapeutic potential against antibiotic-resistant bacteria, viruses and even parasites. However, high manufacturing costs have greatly limited their development as drugs, thus highlighting the need to develop novel and competitive production strategies.
View Article and Find Full Text PDFBioactive peptides derived from the receptor-binding region of human apolipoprotein E have previously been reported. All these peptides, encompassing fragments of this region or designed on the basis of short repeated cationic sequences identified in the same region, show toxic activities against a broad spectrum of bacteria and interesting immunomodulatory effects. However, the ability of these molecules to exert antibiofilm properties has not been described so far.
View Article and Find Full Text PDFBiochim Biophys Acta Gen Subj
September 2017
Background: The peptide VLL-28, identified in the sequence of an archaeal protein, the transcription factor Stf76 from Sulfolobus islandicus, was previously identified and characterized as an antimicrobial peptide, possessing a broad-spectrum antibacterial activity.
Methods: Through a combined approach of NMR and Circular Dichroism spectroscopy, Dynamic Light Scattering, confocal microscopy and cell viability assays, the interaction of VLL-28 with the membranes of both parental and malignant cell lines has been characterized and peptide mechanism of action has been studied.
Results: It is here demonstrated that VLL-28 selectively exerts cytotoxic activity against murine and human tumor cells.
Biochem Pharmacol
April 2017
Host defence peptides (HDPs) are short, cationic amphipathic peptides that play a key role in the response to infection and inflammation in all complex life forms. It is increasingly emerging that HDPs generally have a modest direct activity against a broad range of microorganisms, and that their anti-infective properties are mainly due to their ability to modulate the immune response. Here, we report the recombinant production and characterization of two novel HDPs identified in human Apolipoprotein B (residues 887-922) by using a bioinformatics method recently developed by our group.
View Article and Find Full Text PDF