Novel antibiotics are urgently needed since bacteria are becoming increasingly resistant to existing antimicrobial drugs. Furthermore, available antibiotics are broad spectrum, often causing off-target effects on host cells and the beneficial microbiome. To overcome these limitations, we used structure-guided design to generate synthetic peptides derived from Andersonin-D1, an antimicrobial peptide (AMP) produced by the odorous frog Odorrana andersonii.
View Article and Find Full Text PDFNPJ Antimicrob Resist
January 2025
Artificial intelligence (AI) has transformed infectious disease control, enhancing rapid diagnosis and antibiotic discovery. While conventional tests delay diagnosis, AI-driven methods like machine learning and deep learning assist in pathogen detection, resistance prediction, and drug discovery. These tools improve antibiotic stewardship and identify effective compounds such as antimicrobial peptides and small molecules.
View Article and Find Full Text PDFEncrypted peptides (EPs) have been recently described as a new class of antimicrobial molecules. They have been found in numerous organisms and have been proposed to have a role in host immunity and as alternatives to conventional antibiotics. Intriguingly, many of these EPs are found embedded in proteins unrelated to the immune system, suggesting that immunological responses extend beyond traditional host immunity proteins.
View Article and Find Full Text PDFDrug-resistant bacteria are outpacing traditional antibiotic discovery efforts. Here, we computationally screened 444,054 previously reported putative small protein families from 1,773 human metagenomes for antimicrobial properties, identifying 323 candidates encoded in small open reading frames (smORFs). To test our computational predictions, 78 peptides were synthesized and screened for antimicrobial activity in vitro, with 70.
View Article and Find Full Text PDFEncrypted peptides have been recently described as a new class of antimicrobial molecules. They have been proposed to play a role in host immunity and as alternatives to conventional antibiotics. Intriguingly, many of these peptides are found embedded in proteins unrelated to the immune system, suggesting that immunological responses may extend beyond traditional host immunity proteins.
View Article and Find Full Text PDFDespite significant progress in antibiotic discovery, millions of lives are lost annually to infections. Surprisingly, the failure of antimicrobial treatments to effectively eliminate pathogens frequently cannot be attributed to genetically-encoded antibiotic resistance. This review aims to shed light on the fundamental mechanisms contributing to clinical scenarios where antimicrobial therapies are ineffective (i.
View Article and Find Full Text PDFComputational approaches are emerging as powerful tools for the discovery of antibiotics. A study now uses machine learning to discover abaucin, a potent antibiotic that targets the bacterial pathogen .
View Article and Find Full Text PDFIntroduction: As machine learning (ML) and artificial intelligence (AI) expand to many segments of our society, they are increasingly being used for drug discovery. Recent deep learning models offer an efficient way to explore high-dimensional data and design compounds with desired properties, including those with antibacterial activity.
Areas Covered: This review covers key frameworks in antibiotic discovery, highlighting physicochemical features and addressing dataset limitations.
Drug-resistant bacteria are outpacing traditional antibiotic discovery efforts. Here, we computationally mined 444,054 families of putative small proteins from 1,773 human gut metagenomes, identifying 323 peptide antibiotics encoded in small open reading frames (smORFs). To test our computational predictions, 78 peptides were synthesized and screened for antimicrobial activity , with 59% displaying activity against either pathogens or commensals.
View Article and Find Full Text PDFAntimicrobial peptides (AMPs) hold promise as alternatives to traditional antibiotics for preventing and treating multidrug-resistant infections. Although they have potent antimicrobial efficacy, AMPs are mainly limited by their susceptibility to proteases and potential off-site cytotoxicity. Designing the right delivery system for peptides can help to overcome such limitations, thus improving the pharmacokinetic and pharmacodynamic profiles of these drugs.
View Article and Find Full Text PDFTopical antimicrobial treatments are often ineffective on recalcitrant and resistant skin infections. This necessitates the design of antimicrobials that are less susceptible to resistance mechanisms, as well as the development of appropriate delivery systems. These two issues represent a great challenge for researchers in pharmaceutical and drug discovery fields.
View Article and Find Full Text PDFBackground: medical device-induced infections affect millions of lives worldwide and innovative preventive strategies are urgently required. Antimicrobial peptides (AMPs) appear as ideal candidates to efficiently functionalize medical devices surfaces and prevent bacterial infections. In this scenario, here, we produced antimicrobial polydimethylsiloxane (PDMS) by loading this polymer with an antimicrobial peptide identified in human apolipoprotein B, r(P)ApoB.
View Article and Find Full Text PDFMulti-drug resistant infections cause the death of millions of people worldwide. Today, there is an urgent need to identify innovative and sustainable alternatives to conventional antibiotics and to develop outside the box strategies to counter drug resistance. Versatile molecules such as antimicrobial peptides (AMPs), which display multiple mechanisms of action, have been explored as templates constituting a new generation of antibiotics.
View Article and Find Full Text PDFEncrypted peptides have been recently found in the human proteome and represent a potential class of antibiotics. Here we report three peptides derived from the human apolipoprotein B (residues 887-922) that exhibited potent antimicrobial activity against drug-resistant , , and both and in an animal model. The peptides had excellent cytotoxicity profiles, targeted bacteria by depolarizing and permeabilizing their cytoplasmic membrane, inhibited biofilms, and displayed anti-inflammatory properties.
View Article and Find Full Text PDFHost defense peptides (HDPs) are gaining increasing interest, since they are endowed with multiple activities, are often effective on multidrug resistant bacteria and do not generally lead to the development of resistance phenotypes. Cryptic HDPs have been recently identified in human apolipoprotein B and found to be endowed with a broad-spectrum antimicrobial activity, with anti-biofilm, wound healing and immunomodulatory properties, and with the ability to synergistically act in combination with conventional antibiotics, while being not toxic for eukaryotic cells. Here, a multidisciplinary approach was used, including time killing curves, differential scanning calorimetry, circular dichroism, ThT binding assays, and transmission electron microscopy analyses.
View Article and Find Full Text PDFThe effectiveness of three novel "host defence peptides" identified in human Apolipoprotein B (ApoB) as novel antimicrobial and antibiofilm agents to be employed in food industry is reported. ApoB-derived peptides have been found to exert significant antimicrobial effects towards Salmonella typhimurium ATCC® 14028 and Salmonella enteritidis 706 RIVM strains. Furthermore, they have been found to retain antimicrobial activity under experimental conditions selected to simulate those occurring during food storage, transportation and heat treatment, and have been found to be endowed with antibiofilm properties.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
March 2021
Therapeutic options to treat invasive fungal infections are still limited. This makes the development of novel antifungal agents highly desirable. Naturally occurring antifungal peptides represent valid candidates, since they are not harmful for human cells and are endowed with a wide range of activities and their mechanism of action is different from that of conventional antifungal drugs.
View Article and Find Full Text PDFChronic respiratory infections are the main cause of morbidity and mortality in cystic fibrosis (CF) patients, and are characterized by the development of multidrug resistance (MDR) phenotype and biofilm formation, generally recalcitrant to treatment with conventional antibiotics. Hence, novel effective strategies are urgently needed. Antimicrobial peptides represent new promising therapeutic agents.
View Article and Find Full Text PDFCationic Host Defense Peptides (HDPs) are endowed with a broad variety of activities, including direct antimicrobial properties and modulatory roles in the innate immune response. Even if it has been widely demonstrated that bacterial membrane represents the main target of peptide antimicrobial activity, the molecular mechanisms underlying membrane perturbation by HDPs have not been fully clarified yet. Recently, two cryptic HDPs have been identified in human apolipoprotein B and found to be endowed with a broad-spectrum antimicrobial activity, and with anti-biofilm, wound healing and immunomodulatory properties.
View Article and Find Full Text PDF