Publications by authors named "Ehsan Bahojb Noruzi"

This research introduces an interesting approach to improve pesticide delivery to corn leaves during hot climates by developing super-amphiphilic adjuvants through amino pillar[5]arene (AP5A) and cetyltrimethylammonium bromide (CTAB) complexation. The AP5A-CTAB adjuvant functions to improve droplet retention along with spreading capabilities for resolving limitations that exist in small molecule adjuvants. The AP5A-CTAB host-guest complexation was confirmed by UV-Vis, NMR spectroscopy, and Gaussian calculations.

View Article and Find Full Text PDF

Fungicides have been widely used in agricultural production; however, their extensive use has caused serious environmental pollution. Because of its high efficiency, low toxicity, and high selectivity, chiral fungicides can effectively reduce the amount of fungicides and increase the efficiency. Hence, how to efficiently separate the enantiomers of chiral drugs with different structures is of significant research value.

View Article and Find Full Text PDF

The root ducts play an important role in the plant's transport of nutrients from the soil. Based on the selective transport characteristics of plant roots, amino pillar[6]arene bionic porous root sub-nano channel membrane were constructed to remove Imazamox. Imazamox (IM) is an effective imidazolinone herbicide frequently utilized in soybean fields to control a wide range of annual grasses and broad-leaved weeds.

View Article and Find Full Text PDF

Rare earth elements (REEs), vital and limited resources, also play a significant role in agriculture. Previous findings indicated that the proper concentration of REEs could enhance the germination process, seed germination rate, and seedling growth and development. This paper introduces designing, synthesizing, and assembling a new type of tapered nanogates for separating and detecting lanthanide ions (La).

View Article and Find Full Text PDF
Article Synopsis
  • - BPA is a harmful endocrine disruptor that negatively affects crop growth and poses risks to sustainable agriculture and human health.
  • - A new membrane called TpBD-COF, composed of a water-stabilized imine covalent organic framework, effectively removes BPA by utilizing smaller pores to enhance selective absorption.
  • - This innovative membrane achieves a BPA removal efficiency that is 5.79 times greater than traditional membranes and could greatly benefit agricultural irrigation by cleaning wastewater and supporting crop health.
View Article and Find Full Text PDF

While rare earth elements (REEs) are essential for modern technology, their production methods raise concerns for agriculture. Researchers are now exploring ways to control and recycle REEs pollution, aiming to minimize agricultural impacts and potentially even develop methods to utilize these elements for improved crop yields. Regarding this issue, a new type of pillar[5]arene polymer (Pol-P[5]-BTZP) has been designed and synthesized by click reaction to enhance the efficiency of adsorption and recovery of rare earth metals.

View Article and Find Full Text PDF

Fungicides have been widely used to protect crops from the disease of pythium aphanidermatum (PA). However, excessive use of synthetic fungicides can lead to fungal pathogens developing microbicide resistance. Recently, biomimetic nano-delivery systems have been used for controlled release, reducing the overuse of fungicides, and thereby protecting the environment.

View Article and Find Full Text PDF

In our study, we developed a novel nanobiocomposite using graphene oxide (GO), casein (Cas), ZnAl layered double hydroxide (LDH), sodium alginate (Alg), and FeO magnetic nanoparticles. To synthesize the GO, we used a modified Hummer's method and then covalently functionalized its surface with Cas protein. The functionalized GO was combined with as-synthesized ZnAl LDH, and the composite was conjugated with alginate hydrogel through the gelation process.

View Article and Find Full Text PDF

In an effort to make pesticide use safer, more efficient, and sustainable, micro-/nanocarriers are increasingly being utilized in agriculture to deliver pesticide-active agents, thereby reducing quantities and improving effectiveness. In the use of nanopesticides, the choice to further design and prepare pesticide stimulus-responsive nanocarriers based on changes in the plant growth environment (light, temperature, pH, enzymes, etc.) has received more and more attention from researchers.

View Article and Find Full Text PDF

This paper presents a new scaffold made from graphene oxide nanosheets, calix[4]arene supramolecules, silk fibroin proteins, cobalt ferrite nanoparticles, and alginate hydrogel (GO-CX[4]/SF/CoFeO/Alg). After preparing the composite, we conducted various analyses to examine its structure. These analyses included FTIR, XRD, SEM, EDS, VSM, DLS, and zeta potential tests.

View Article and Find Full Text PDF

Excess fluoride ions in groundwater accumulate through the roots of crops, affecting photosynthesis and inhibiting their growth. Long-term bioaccumulation also threatens human health because it is poorly degradable and toxic. Currently, one of the biggest challenges is developing a unique material that can efficiently remove fluoride ions from the environment.

View Article and Find Full Text PDF

A magnetic xanthan hydrogel/silk fibroin nanobiocomposite (XG hydrogel/SF/FeO) was designed, fabricated, and characterized using analyzing methods such as FT-IR, EDX, FE-SEM, XRD, TGA, and VSM to evaluate the exact structure of product nanobiocomposite. The FE-SEM images reveal the presence of spherical shapes exhibiting a narrow size range and homogeneous distribution, measuring between 30 and 35 nm in diameter. The VSM analysis demonstrates the superparamagnetic properties of the XG hydrogel/SF/FeO nanobiocomposite, exhibiting a magnetic saturation of 54 emu/g at room temperature.

View Article and Find Full Text PDF

There is a growing demand for biomaterials developing with novel properties for biomedical applications hence, hydrogels with 3D crosslinked polymeric structures obtained from natural polymers have been deeply inspected in this field. Pectin a unique biopolymer found in the cell walls of fruits and vegetables is extensively used in the pharmaceutical, food, and textile industries due to its ability to form a thick gel-like solution. Considering biocompatibility, biodegradability, easy gelling capability, and facile manipulation of pectin-based biomaterials; they have been thoroughly investigated for various potential biomedical applications including drug delivery, wound healing, tissue engineering, creation of implantable devices, and skin-care products.

View Article and Find Full Text PDF

In this paper, a novel graphene oxide-folic acid/silk fibroin (GO-FA/SF) nanobiocomposite scaffold was designed and fabricated using affordable and non-toxic materials. The GO was synthesized using the hummer method, covalently functionalized with FA, and then easily conjugated with extracted SF via the freeze-drying process. For characterization of the scaffold, several techniques were employed: Fourier-transform infrared (FT-IR), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray (EDX), and thermogravimetric analysis (TGA).

View Article and Find Full Text PDF

Tissue is vital to the organization of multicellular organisms, because it creates the different organs and provides the main scaffold for body shape. The quest for effective methods to allow tissue regeneration and create scaffolds for new tissue growth has intensified in recent years. Tissue engineering has recently used some promising alternatives to existing conventional scaffold materials, many of which have been derived from nanotechnology.

View Article and Find Full Text PDF

One of the most common phenol-formaldehyde cyclic oligomers from hydroxyalkylation reactions that exhibit supramolecular chemistry are calixarenes. These macrocyclic compounds are qualified to act as synthetic catalysts due to their specific features including being able to form host-guest complexes, having unique structural scaffolds and their relative ease of chemical modifications with a variety of functions on their upper rim and lower rim. Here, a functional magnetic nanocatalyst was designed and synthesized by using a synthetic amino-functionalized calix[4]arene.

View Article and Find Full Text PDF

The history, properties, and characteristics of para-sulfonato-calixarenes are described. On the one hand, the inherent antibacterial and antifungal properties against microorganisms, and on the other hand non-toxicity of these supramolecules toward human organs are analyzed. The resulting biocompatibility of para-sulfonato-calixarenes makes them potential candidates for diverse life sciences and pharmaceutical applications without significant side effects.

View Article and Find Full Text PDF

The design and synthesis of a novel tert-butyl-calix[4]arene functionalized at 1, 3 positions of the lower rim with two terminal 2-hydroxybenzeledene-thiosemicarbazone moieties is reported. The new ligand with multi-dentate chelating properties was fully characterized by several techniques: ESI-Mass spectroscopy, FT-IR, 1H-NMR, and single crystal X-ray diffraction. The solid state structure confirms that the calix[4]arene macrocycle has the expected open cone conformation, with two opposite phenyl rings inclined outwards with large angles.

View Article and Find Full Text PDF

Wound healing is a dynamic and complex process which affects the quality of life in patients and annually causes high costs for the health system, worldwide. Polymers from natural origins such as polysaccharides have gained particular interest between researchers for wound dressing applications due to their abundance in nature, biocompatibility with human tissues, and ideal physicochemical properties. Aside from their supportive effect in wound care, polysaccharides and their derivatives can actively contribute to the healing process.

View Article and Find Full Text PDF

In this study, we synthesized a new thiosemicarbazide-functionalized calix[4]arene and its Co, Ni, Cu, and Zn transition metal complexes. For characterization several techniques were employed: Fourier-transform infrared (FT-IR), H nuclear magnetic resonance (NMR), C-NMR, N-NMR, correlation spectroscopy (COZY), nuclear Overhauser enhancement spectroscopy (NOESY), electrospray ionization (ESI)-mass spectroscopy, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and elemental analysis. To explore the capability of the thiosemicarbazide function hosted on a calix[4]arene scaffold for growth inhibition of bacteria, fungi, and cancerous tumor cells, a series of biological evaluations were performed.

View Article and Find Full Text PDF
Article Synopsis
  • Chemotherapy often struggles with drug resistance and side effects, but innovative drug delivery systems are being developed to improve treatment efficacy.
  • A novel amphoteric calix[4]arene was synthesized using a green method and coated on magnetic nanoparticles, allowing for the targeted delivery of doxorubicin and methotrexate to MCF7 cancer cells.
  • Research showed that this new nanocarrier efficiently delivers both drugs and effectively kills cancer cells, indicating its potential for further testing in animal studies for breast cancer treatment.
View Article and Find Full Text PDF

In the title compound, (C₁₄H₁₃N₂)[FeCl₄]·CH₃OH, the 2,9-dimethyl-1,10-phenanthrolin-1-ium cation, FeCl₄ ⁻ anion and methanol solvent mol-ecule lie on a twofold rotation axis. Due to symmetry, the H atom on the N atom of the cation is half-occupied. In the anion, the Fe(III) atom has a tetra-hedral geometry.

View Article and Find Full Text PDF