Publications by authors named "Eduardo Prieto"

This work explores size transformations during the electrophoretic deposition (EPD) of citrate-coated Au nanoparticles (NPs). The EPD method involves a transparent ITO-glass electrode subjected to 1.0 V (vs Ag/AgCl) immersed in a solution of as-synthesized Au NPs with hydroquinone (HQ) serving for the deposition of NPs.

View Article and Find Full Text PDF

The ability of entomopathogenic fungi, such as , to infect insects by penetrating their cuticle is well documented. However, some insects have evolved mechanisms to combat fungal infections. The red flour beetle (), a major pest causing significant economic losses in stored product environments globally, embeds antifungal compounds within its cuticle as a protective barrier.

View Article and Find Full Text PDF

This study explores how water content modulates the self-assembly and fluorescence behavior of two novel calix[4]resorcinarene macrocycles. These macrocycles transition from large, flattened structures in pure THF to large giant vesicles (500-5000 nm) coexisting with small micelles (3.4-3.

View Article and Find Full Text PDF

This article examines the development and implementation of a customized Python script utilizing the Elsevier Scopus and Clarivate Web of Science Journal Citation Reports Application Programming Interfaces (APIs). The aim was to streamline and expedite the labor-intensive process of collecting research metrics, which were traditionally compiled manually by librarians at the University of Miami Miller School of Medicine Louis Calder Memorial Library. The script significantly reduces the time and effort required to generate comprehensive reports on research productivity, thereby enabling more efficient resource allocation and aiding in faculty evaluations.

View Article and Find Full Text PDF

This study explores how water content modulates the self-assembly and fluorescence behavior of a novel calixarene, C1. C1 forms large, flattened structures in pure THF, but water addition triggers a transition to smaller, unimodal clusters. A critical micellar concentration (CMC) is identified, decreasing with increasing water content.

View Article and Find Full Text PDF

Amino-acid-based surfactants are a group of compounds that resemble natural amphiphiles and thus are expected to have a low impact on the environment, owing to either the mode of surfactant production or its means of disposal. Within this context, arginine-based tensioactives have gained particular interest, since their cationic nature-in combination with their amphiphilic character-enables them to act as broad-spectrum biocides. This capability is based mainly on their interactive affinity for the microbial envelope that alters the latter's structure and ultimately its function.

View Article and Find Full Text PDF

Here we report the use of graphene quantum dots (GQDs), obtained from 3D graphene foam, functionalized with 8-hydroxyquinoline (8-HQ) for the sensitive and selective detection of Hg via front-face fluorescence. The great surface area and active groups within the GQDs permitted the functionalization with 8-HQ to increase their selectivity toward the analyte of interest. The fluorescence probe follows the Stern-Volmer model, yielding a direct relationship between the degree of quenching and the concentration of the analyte.

View Article and Find Full Text PDF

The market demand together with the need for alternatives to withstand climate change led to the recovery of autochthonous grapevine varieties. Under climate change, the summer pruning of vineyards may lead to an increase of vegetative residuals of nutritional and medicinal interest. The objectives of our study were (1) to evaluate the nutritional properties of the leaves of three local Spanish grapevines (Tinto Velasco, TV, Pasera, PAS, and Ambrosina, AMB) when grown under climate change conditions, and (2) to test the potentiality of these grapevines as suitable candidates to be cultivated under climate change scenarios based on the quality of their must.

View Article and Find Full Text PDF

Objective: To develop an antimicrobial and anti-adherent thymol (TOH)-containing coating on titanium (Ti) by a bioinspired one-step biocompatible method.

Methods: A nanolayer of adsorbed TOH (TOH-NL-Ti) was formed by an easy deep coating method on Ti surface. The treatment consists in a simple one-step immersion process in a TOH-containing solution.

View Article and Find Full Text PDF

Gastropod Molluscs rely exclusively on the innate immune system to protect from pathogens, defending their embryos through maternally transferred effectors. In this regard, snail eggs, in addition to immune defenses, have evolved the perivitellin-2 or PV2 combining two immune proteins into a neurotoxin: a lectin and a pore-forming protein from the Membrane Attack Complex/Perforin (MACPF) family. This binary structure resembles AB-toxins, a group of toxins otherwise restricted to bacteria and plants.

View Article and Find Full Text PDF

The reason that determines the pathological deposition of human apolipoprotein A-I variants inducing organ failure has been under research since the early description of natural mutations in patients. To shed light into the events associated with protein aggregation, we studied the structural perturbations that may occur in the natural variant that shows a substitution of a Leucine by an Arginine in position 60 (L60R). Circular dichroism, intrinsic fluorescence measurements, and proteolysis analysis indicated that L60R was more unstable, more sensitive to cleavage and the N-terminus was more disorganized than the protein with the native sequence (Wt).

View Article and Find Full Text PDF

Background: Different protein conformations may be involved in the development of clinical manifestations associated with human amyloidosis. Although a fibrillar conformation is usually the signature of damage in the tissues of patients, it is not clear whether this species is per se the cause or the consequence of the disease. Hereditary amyloidosis due to variants of apolipoprotein A-I (apoA-I) with a substitution of a single amino acid is characterized by the presence of fibrillar protein within the lesions.

View Article and Find Full Text PDF

Celiac disease (CeD) is a highly prevalent chronic immune-mediated enteropathy developed in genetically predisposed individuals after ingestion of a group of wheat proteins (called gliadins and glutenins). The 13mer α-gliadin peptide, p31-43, induces proinflammatory responses, observed by in vitro assays and animal models, that may contribute to innate immune mechanisms of CeD pathogenesis. Since a cellular receptor for p31-43 has not been identified, this raises the question of whether this peptide could mediate different biological effects.

View Article and Find Full Text PDF

Celiac disease (CD) is a chronic enteropathy elicited by a Th1 response to gluten peptides in the small intestine of genetically susceptible individuals. However, it remains unclear what drives the induction of inflammatory responses of this kind against harmless antigens in food. In a recent work, we have shown that the p31-43 peptide (p31-43) from α-gliadin can induce an innate immune response in the intestine and that this may initiate pathological adaptive immunity.

View Article and Find Full Text PDF

Xanthan is a virulence factor produced by Xanthomonas spp. We previously demonstrated that this exopolysaccharide is not only essential for pathogenicity by contributing with bacterial survival but also its pyruvate substituents interfere with some plant defense responses. Deepening our studies about xanthan properties and structure, the aim of this work was to analyze the characteristics of xanthan produced by Xanthomonas in different culture media.

View Article and Find Full Text PDF

The entomopathogenic fungus Beauveria bassiana is able to grow on insect cuticle hydrocarbons, inducing alkane assimilation pathways and concomitantly increasing virulence against insect hosts. In this study, we describe some physiological and molecular processes implicated in growth, nutritional stress response, and cellular alterations found in alkane-grown fungi. The fungal cytology was investigated using light and transmission electron microscopy while the surface topography was examined using atomic force microscopy.

View Article and Find Full Text PDF

In mammalian cells, de novo glycerolipid synthesis begins with the acylation of glycerol-3-phosphate, catalyzed by glycerol-3-phosphate acyltransferases (GPAT). GPAT2 is a mitochondrial isoform primarily expressed in testis under physiological conditions, and overexpressed in several types of cancers and cancer-derived human cell lines where its expression contributes to the tumor phenotype. Using gene silencing and atomic force microscopy, we studied the correlation between GPAT2 expression and cell surface topography, roughness and membrane permeability in MDA-MB-231 cells.

View Article and Find Full Text PDF

A number of naturally occurring mutations of human apolipoprotein A-I (apoA-I) have been associated with hereditary amyloidoses. The molecular mechanisms involved in amyloid-associated pathology remain largely unknown. Here we examined the effects of the Arg173Pro point mutation in apoA-I on the structure, stability, and aggregation propensity, as well as on the ability to bind to putative ligands.

View Article and Find Full Text PDF

Experimental evidence has suggested that plasma membrane (PM)-associated signaling and hence cell metabolism and viability depend on lipid composition and organization. The aim of the present work is to develop a cell model to study the endogenous polyunsaturated fatty acids (PUFAs) effect on PM properties and analyze its influence on cholesterol (Chol) homeostasis. We have previously shown that by using a cell line over-expressing stearoyl-CoA-desaturase, membrane composition and organization coordinate cellular pathways involved in Chol efflux and cell viability by different mechanisms.

View Article and Find Full Text PDF

Discoidal high-density lipoproteins (D-HDL) are critical intermediates in reverse cholesterol transport. Most of the present knowledge of D-HDL is based on studies with reconstituted lipoprotein complexes of apolipoprotein A-I (apoA-I) obtained by cholate dialysis (CD). D-HDL can also be generated by the direct microsolubilization (DM) of phospholipid vesicles at the gel/fluid phase transition temperature, a process mechanistically similar to the "in vivo" apoAI lipidation via ABCA1.

View Article and Find Full Text PDF

Apolipoprotein A-I (apoA-I) is the major protein component of high density lipoproteins. This protein has key functions in lipoprotein metabolism and its plasma concentration is inversely correlated with the incidence of atherosclerosis and cardiovascular diseases. There is an increasing need to develop methods for efficient production of recombinant apoA-I for using it in basic research or pharmacological therapy.

View Article and Find Full Text PDF

Human apolipoprotein A-I (apoA-I)-derived amyloidosis can present with either wild-type (Wt) protein deposits in atherosclerotic plaques or as a hereditary form in which apoA-I variants deposit causing multiple organ failure. More than 15 single amino acid replacement amyloidogenic apoA-I variants have been described, but the molecular mechanisms involved in amyloid-associated pathology remain largely unknown. Here, we have investigated by fluorescence and biochemical approaches the stabilities and propensities to aggregate of two disease-associated apoA-I variants, apoA-IGly26Arg, associated with polyneuropathy and kidney dysfunction, and apoA-ILys107-0, implicated in amyloidosis in severe atherosclerosis.

View Article and Find Full Text PDF

Amyloidoses constitute a group of diseases in which soluble proteins aggregate and deposit extracellularly in tissues. Nonhereditary apolipoprotein A-I (apoA-I) amyloid is characterized by deposits of nonvariant protein in atherosclerotic arteries. Despite being common, little is known about the pathogenesis and significance of apoA-I deposition.

View Article and Find Full Text PDF

Apolipoprotein A-I (apoAI) contains several amphipathic α-helices. To carry out its function, it exchanges between lipid-free and different lipidated states as bound to membranes or to lipoprotein complexes of different morphology, size, and composition. When bound to membranes or to spherical lipoprotein surfaces, it is thought that most α-helices arrange with their long axis parallel to the membrane surface.

View Article and Find Full Text PDF