98%
921
2 minutes
20
The market demand together with the need for alternatives to withstand climate change led to the recovery of autochthonous grapevine varieties. Under climate change, the summer pruning of vineyards may lead to an increase of vegetative residuals of nutritional and medicinal interest. The objectives of our study were (1) to evaluate the nutritional properties of the leaves of three local Spanish grapevines (Tinto Velasco, TV, Pasera, PAS, and Ambrosina, AMB) when grown under climate change conditions, and (2) to test the potentiality of these grapevines as suitable candidates to be cultivated under climate change scenarios based on the quality of their must. Experimental assays were performed with fruit-bearing cuttings grown in temperature gradient greenhouses that simulate rising CO (700 μmol mol) and warming (ambient temperature +4 °C), either acting alone or in combination. TV and AMB were the most and the least affected by air temperature and CO concentration, respectively. The interaction of elevated CO with high temperature induced the accumulation of proteins and phenolic compounds in leaves of TV, thus enhancing their nutritional properties. In PAS, the negative effect of high temperature on protein contents was compensated for by elevated CO. Warming was the most threatening scenario for maintaining the must quality in the three varieties, but elevated CO exerted a beneficial effect when acting alone and compensated for the negative effects of high temperatures. While TV may be a candidate to be cultivated in not very warm areas (higher altitudes or colder latitudes), PAS behaved as the most stable genotype under different environmental scenarios, making it the most versatile candidate for cultivation in areas affected by climate change.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8231099 | PMC |
http://dx.doi.org/10.3390/plants10061198 | DOI Listing |
Glob Chang Biol
September 2025
Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, the Netherlands.
Droughts are increasing with climate change, affecting the functioning of terrestrial ecosystems and limiting their capacity to mitigate rising atmospheric CO levels. However, there is still large uncertainty on the long-term impacts of drought on ecosystem carbon (C) cycling, and how this determines the effect of subsequent droughts. Here, we aimed to quantify how drought legacy affects the response of a heathland ecosystem to a subsequent drought for two life stages of Calluna vulgaris resulting from different mowing regimes.
View Article and Find Full Text PDFFront Reprod Health
August 2025
Department of Social Care and Social Work, Manchester Metropolitan University, Manchester, United Kingdom.
The climate crisis jeopardizes human health and is one of the greatest threats to reproductive autonomy and human rights. Witnessing these threats, the Sexual and Reproductive Health and Rights and Climate Justice Coalition was formed in 2021 to advocate on the intersections between climate change and sexual and reproductive health, rights, and justice (SRHRJ). The Coalition's purpose is to leverage intersectional approaches to influence global and national policies, programs, and funding mechanisms to advance climate justice, gender equality, and human rights.
View Article and Find Full Text PDFFront Public Health
September 2025
Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, United States.
The frequency and severity of heat waves are expected to worsen with climate change. Exposure to extreme heat, or prolonged unusually high temperatures, are associated with increased morbidity and mortality. The fetus, infant, and young child are more sensitive to higher temperatures than older children and most adults given that they are rapidly developing.
View Article and Find Full Text PDFWellcome Open Res
August 2025
Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, USA.
Arenaviruses and Hantaviruses, primarily hosted by rodents and shrews, represent significant public health threats due to their potential for zoonotic spillover into human populations. Despite their global distribution, the full impact of these viruses on human health remains poorly understood, particularly in regions like Africa, where data is sparse. Both virus families continue to emerge, with pathogen evolution and spillover driven by anthropogenic factors such as land use change, climate change, and biodiversity loss.
View Article and Find Full Text PDFAlpha Psychiatry
August 2025
Department of Mental Health, North West Tuscany Local Health Authority, 57023 Cecina, Italy.