Plant Physiol Biochem
July 2025
Plants have evolved complex signal transduction networks to regulate metabolism and adapt to their environment. Calcium ions serve as key messengers in these pathways, playing central roles in a wide range of signal transduction processes. In plants, multiple classes of calcium-binding proteins can detect transient calcium signal fluctuations triggered by various stimuli, and initiate downstream responses.
View Article and Find Full Text PDFPlant Biotechnol J
July 2025
Maintaining the balance between growth and drought tolerance is arguably one of the most prevalent challenges encountered by woody plants. In this study, we performed genome-wide association studies (GWAS) of percentage loss of diameter (PLD) in the stems of 300 Populus tomentosa accessions under drought stress. Our analysis identified the bZIP transcription factor PtobZIP18 as a key regulator of xylem development in response to drought stress.
View Article and Find Full Text PDFPlant Cell Environ
July 2025
Salt stress is a major abiotic stress restrict plant growth and distribution. In our previous study, we found the ABI5-BINDING PROTEIN 2a (PagAFP2a) gene was rapidly and significantly induced by salt stress in hybrid poplar (Populus alba × Populus glandulosa), however, its function in salt stress responses was unclear. In this study, we further demonstrated that the PagAFP2a gene expression is significantly induced by salt and ABA treatments.
View Article and Find Full Text PDFBMC Plant Biol
December 2024
Background: Accumulation of coumarins plays key roles in response to immune and abiotic stress in plants, but the genetic adaptation basis of controlling coumarins in perennial woody plants remain unclear.
Results: We detected 792 SNPs within 334 genes that were significantly associated with the phenotypic variations of 15 single-metabolic traits and multiple comprehensive index, such as principal components (PCs) of coumarins metabolites. Expression quantitative trait locus mapping uncovered that 337 eQTLs associated with the expression levels of 132 associated genes.
DNA methylation is an essential epigenetic modification for gene regulation in plant growth and development. However, the precise mechanisms of DNA methylation remain poorly understood, especially in woody plants. We employed whole-genome bisulfite sequencing (WGBS), assays for transposase-accessible chromatin using sequencing (ATAC-seq), and RNA-Seq to investigate epigenetic regulatory relationships in Populus tomentosa treated with DNA methylation inhibitor 5-azacitidine.
View Article and Find Full Text PDFRare variants contribute significantly to the 'missing heritability' of quantitative traits. The genome-wide characteristics of rare variants and their roles in environmental adaptation of woody plants remain unexplored. Utilizing genome-wide rare variant association study (RVAS), expression quantitative trait loci (eQTL) mapping, genetic transformation, and molecular experiments, we explored the impact of rare variants on stomatal morphology and drought adaptation in Populus.
View Article and Find Full Text PDFNew Phytol
May 2024
Leaf development is a multifaceted and dynamic process orchestrated by a myriad of genes to shape the proper size and morphology. The dynamic genetic network underlying leaf development remains largely unknown. Utilizing a synergistic genetic approach encompassing dynamic genome-wide association study (GWAS), time-ordered gene co-expression network (TO-GCN) analyses and gene manipulation, we explored the temporal genetic architecture and regulatory network governing leaf development in Populus.
View Article and Find Full Text PDFPlant Biotechnol J
April 2024
Wood formation, intricately linked to the carbohydrate metabolism pathway, underpins the capacity of trees to produce renewable resources and offer vital ecosystem services. Despite their importance, the genetic regulatory mechanisms governing wood fibre properties in woody plants remain enigmatic. In this study, we identified a pivotal module comprising 158 high-priority core genes implicated in wood formation, drawing upon tissue-specific gene expression profiles from 22 Populus samples.
View Article and Find Full Text PDFPlant Biotechnol J
October 2023
Plant Physiol
August 2023
Drought stress limits woody species productivity and influences tree distribution. However, dissecting the molecular mechanisms that underpin drought responses in forest trees can be challenging due to trait complexity. Here, using a panel of 300 Chinese white poplar (Populus tomentosa) accessions collected from different geographical climatic regions in China, we performed a genome-wide association study (GWAS) on seven drought-related traits and identified PtoWRKY68 as a candidate gene involved in the response to drought stress.
View Article and Find Full Text PDFFor Res (Fayettev)
February 2023
During the independent process of evolution in plants, photosynthesis appears to have been under convergent evolution to adapt to specific selection pressure in their geographical regions. However, it is unclear how lncRNA regulation and DNA methylation are involved in the phenotypic convergence in distinct lineages. Here, we present a large-scale comparative study of lncRNA transcription profile and whole-genome bisulfite sequencing (WGBS) data in two unrelated species, selected from three relatively overlapping geographical regions.
View Article and Find Full Text PDFPlant Cell Environ
February 2023
Little information is known about DNA methylation variation in shaping environment-specific drought resistance and resilience for tree adaptation. In this study, we leveraged RNA sequencing and whole-genome bisulfite sequencing data to dissect the distinction of epigenetic regulation under drought stress and rewater condition of Populus tomentosa accessions from three geographical regions. We demonstrated low resistance and high resilience for accessions from South.
View Article and Find Full Text PDFPlant Cell Environ
January 2023
Stomata are essential for photosynthesis and abiotic stress tolerance. Here, we used multiomics approaches to dissect the genetic architecture and adaptive mechanisms that underlie stomatal morphology in Populus tomentosa juvenile natural population (303 accessions). We detected 46 candidate genes and 15 epistatic gene-pairs, associated with 5 stomatal morphologies and 18 leaf development and photosynthesis traits, through genome-wide association studies.
View Article and Find Full Text PDFForests are not only the most predominant of the Earth's terrestrial ecosystems, but are also the core supply for essential products for human use. However, global climate change and ongoing population explosion severely threatens the health of the forest ecosystem and aggravtes the deforestation and forest degradation. Forest genomics has great potential of increasing forest productivity and adaptation to the changing climate.
View Article and Find Full Text PDFFront Plant Sci
July 2022
Drought frequency and severity are exacerbated by global climate change, which could compromise forest ecosystems. However, there have been minimal efforts to systematically investigate the genetic basis of the response to drought stress in perennial trees. Here, we implemented a systems genetics approach that combines co-expression analysis, association genetics, and expression quantitative trait nucleotide (eQTN) mapping to construct an allelic genetic regulatory network comprising four key regulators (, , , and ) under drought stress conditions.
View Article and Find Full Text PDFEucalyptus urophylla is an economically important tree species that widely planted in tropical and sub-tropical areas around the world, which suffers significant losses due to Ralstonia solanacearum. However, little is known about the molecular mechanism of pathogen-response of Eucalyptus. We collected the vascular tissues of a E.
View Article and Find Full Text PDFMicroRNAs (miRNAs), important posttranscriptional regulators of gene expression, play a crucial role in plant growth and development. A single miRNA can regulate numerous target genes, making the determination of its function and interaction with targets challenging. We identified PtomiR403b target to , which encodes a galactosyltransferase responsible for the biosynthesis of cell wall polysaccharides.
View Article and Find Full Text PDFInt J Mol Sci
August 2021
The stem lenticel is a highly specialized tissue of woody plants that has evolved to balance stem water retention and gas exchange as an adaptation to local environments. In this study, we applied genome-wide association studies and selective sweeping analysis to characterize the genetic architecture and genome-wide adaptive signatures underlying stem lenticel traits among 303 unrelated accessions of , which has significant phenotypic and genetic variations according to climate region across its natural distribution. In total, we detected 108 significant single-nucleotide polymorphisms, annotated to 88 candidate genes for lenticel, of which 9 causative genes showed significantly different selection signatures among climate regions.
View Article and Find Full Text PDFTree Physiol
November 2021
Salicylic acid (SA) is a vital hormone for adaptive responses to biotic and abiotic stresses, which facilitates growth-immunity trade-offs in plants. However, the genetic regulatory networks underlying the metabolic pathway of SA biosynthesis in perennial species remain unclear. Here, we integrated genome-wide association study (GWAS) with metabolite and expression profiling methodologies to dissect the genetic architecture of SA biosynthesis in Populus.
View Article and Find Full Text PDFPhotosynthesis and wood formation underlie the ability of trees to provide renewable resources and perform ecological functions; however, the genetic basis and regulatory pathways coordinating these two linked processes remain unclear. Here, we used a systems genetics strategy, integrating genome-wide association studies, transcriptomic analyses, and transgenic experiments, to investigate the genetic architecture of photosynthesis and wood properties among 435 unrelated individuals of Populus tomentosa, and unravel the coordinated regulatory networks resulting in two trait categories. We detected 222 significant single-nucleotide polymorphisms, annotated to 177 candidate genes, for 10 traits of photosynthesis and wood properties.
View Article and Find Full Text PDFInt J Mol Sci
February 2021
Chlorogenic acid (CGA) plays a crucial role in defense response, immune regulation, and the response to abiotic stress in plants. However, the genetic regulatory network of CGA biosynthesis pathways in perennial plants remains unclear. Here, we investigated the genetic architecture for CGA biosynthesis using a metabolite-based genome-wide association study (mGWAS) and expression quantitative trait nucleotide (eQTN) mapping in a population of 300 accessions of .
View Article and Find Full Text PDF