Publications by authors named "Dritan Agalliu"

Focused ultrasound (FUS) with microbubbles opens the blood-brain barrier (BBB) for targeted drug delivery into the brain. How brain endothelial cells (BECs) respond to either low acoustic pressures known to open the BBB transiently, or high pressures that cause brain damage, is incompletely characterized. Here, we apply FUS at low (450 kPa) and high (750 kPa) pressures in mice where BBB tight junctions are labelled with eGFP and find that arteriole and capillary BECs respond to low pressure by a transient reorganization of tight junctions associated with BBB opening.

View Article and Find Full Text PDF

Unlabelled: Focused ultrasound (FUS) with microbubbles opens the blood-brain barrier (BBB) to allow targeted drug delivery into the brain. The mechanisms by which endothelial cells (ECs) respond to either low acoustic pressures known to open the BBB transiently, or high acoustic pressures that cause brain damage, remain incompletely characterized. Here, we use a mouse strain where tight junctions between ECs are labelled with eGFP and apply FUS at low (450 kPa) and high (750 kPa) acoustic pressures, after which mice are sacrificed at 1 or 72 hours.

View Article and Find Full Text PDF

Background: Immunothrombosis is the process by which the coagulation cascade interacts with the innate immune system to control infection. However, the formation of clots within the brain vasculature can be detrimental to the host. Recent work has demonstrated that Toxoplasma gondii infects and lyses central nervous system (CNS) endothelial cells that form the blood-brain barrier (BBB).

View Article and Find Full Text PDF

Astrocytes are key regulators of central nervous system (CNS) homeostasis, and their dysfunction is implicated in neurological and neurodegenerative disorders. Here, we describe a two-step protocol to generate astrocytes from human induced pluripotent stem cells (hiPSCs) using a bankable neural progenitor cell (NPC) intermediate, followed by low-density passaging and overexpression of the gliogenic transcription factor NFIA. A bankable NPC intermediate allows for facile differentiation into both purified neuronal and astrocyte cell types in parallel from the same genetic background, depending on the experimental needs.

View Article and Find Full Text PDF

Newly formed leaky vessels and blood-brain barrier (BBB) damage are present in demyelinating acute and chronic lesions in multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE). However, the endothelial cell subtypes and signaling pathways contributing to these leaky neovessels are unclear. Here, using single-cell transcriptional profiling and in vivo validation studies, we show that venous endothelial cells express neoangiogenesis gene signatures and show increased proliferation resulting in enlarged veins and higher venous coverage in acute and chronic EAE lesions in female adult mice.

View Article and Find Full Text PDF

The blood-brain barrier (BBB), formed by specialized brain microvascular endothelial cells (BMECs), regulates brain function in health and disease. modeling of the human BBB is limited by the lack of robust hiPSC protocols to generate BMECs. Here, we report generation, transcriptomic and functional characterization of reprogrammed BMECs (rBMECs) by combining hiPSC differentiation into BBB-primed endothelial cells and reprogramming with two BBB transcription factors FOXF2 and ZIC3.

View Article and Find Full Text PDF
Article Synopsis
  • Interactions between neurons, glial cells, and blood vessels are essential for proper retinal blood vessel formation and the development of the blood-retinal barrier (BRB).
  • Research using mouse models shows that a lack of glutamate release from neurons delays blood vessel formation and BRB development, while excessive glutamate from activated retinal cells speeds it up.
  • The study suggests that neuronal activity affects these processes by influencing Norrin/β-catenin signaling in endothelial cells, and that enhancing this signaling can fix some issues caused by reduced glutamate release.
View Article and Find Full Text PDF

Postinfectious neuroinflammation has been implicated in multiple models of acute-onset obsessive-compulsive disorder including Sydenham chorea (SC), pediatric acute-onset neuropsychiatric syndrome (PANS), and pediatric autoimmune neuropsychiatric disorders associated with streptococcal infection (PANDAS). These conditions are associated with a range of autoantibodies which are thought to be triggered by infections, most notably group A streptococci (GAS). Based on animal models using huma sera, these autoantibodies are thought to cross-react with neural antigens in the basal ganglia and modulate neuronal activity and behavior.

View Article and Find Full Text PDF

Adherens (AJ) and tight junction (TJ) integrity is critical for blood-brain barrier (BBB) function in the healthy brain. Junction disassembly due to degradation of AJ and TJ proteins leads to acute BBB dysfunction after ischemic stroke, but the mechanisms are not fully understood. Here, we show that endothelial cell deletion of Rab7a, a small GTPase crucial for protein degradation through the endolysosomal system, reduces acute BBB dysfunction and improves neuronal health in mice after ischemic stroke by preventing degradation of select junctional proteins and preserving TJ structural morphology.

View Article and Find Full Text PDF

Enteric symptoms are hallmarks of prodromal Parkinson's disease (PD) that appear decades before the onset of motor symptoms and diagnosis. PD patients possess circulating T cells that recognize specific α-synuclein (α-syn)-derived epitopes. One epitope, α-syn, binds with strong affinity to the HLA-DRB115:01 allele implicated in autoimmune diseases.

View Article and Find Full Text PDF

Interactions among neuronal, glial and vascular components are crucial for retinal angiogenesis and blood-retinal barrier (BRB) maturation. Although synaptic dysfunction precedes vascular abnormalities in many retinal pathologies, how neuronal activity, specifically glutamatergic activity, regulates retinal angiogenesis and BRB maturation remains unclear. Using genetic studies in mice, single-cell RNA-sequencing and functional validation, we show that deep plexus angiogenesis and paracellular BRB maturation are delayed in retinas where neurons fail to release glutamate.

View Article and Find Full Text PDF

Group A (GAS) infections can cause neuropsychiatric sequelae in children due to post-infectious encephalitis. Multiple GAS infections induce migration of Th17 lymphocytes from the nose into the brain, which are critical for microglial activation, blood-brain barrier (BBB) and neural circuit impairment in a mouse disease model. How endothelial cells (ECs) and microglia respond to GAS infections, and which Th17-derived cytokines are essential for these responses are unknown.

View Article and Find Full Text PDF

Stroke is a devastating cause of global morbidity and mortality. Ischemic brain injury triggers a profound local and systemic immune response that participates in stroke pathophysiology. In turn, this immune response has emerged as a potential therapeutic target.

View Article and Find Full Text PDF

Despite recent advances in our understanding of pathogenic access to the central nervous system (CNS), the mechanisms by which intracellular pathogens disseminate within the dense cellular network of neural tissue remain poorly understood. To address this issue, longitudinal analysis of Toxoplasma gondii dissemination in the brain was conducted using 2-photon imaging through a cranial window in living mice that transgenically express enhanced green fluorescent protein (eGFP)-claudin-5. Extracellular T.

View Article and Find Full Text PDF

Neurovascular unit and barrier maturation rely on vascular basement membrane (vBM) composition. Laminins, a major vBM component, are crucial for these processes, yet the signaling pathway(s) that regulate their expression remain unknown. Here, we show that mural cells have active Wnt/β-catenin signaling during central nervous system development in mice.

View Article and Find Full Text PDF

Blood-brain barrier (BBB) integrity is critical for proper function of the central nervous system (CNS). Here, we show that the endothelial Unc5B receptor controls BBB integrity by maintaining Wnt/β-catenin signaling. Inducible endothelial-specific deletion of Unc5B in adult mice leads to BBB leak from brain capillaries that convert to a barrier-incompetent state with reduced Claudin-5 and increased PLVAP expression.

View Article and Find Full Text PDF

The notion that autoimmune responses to α-synuclein may be involved in the pathogenesis of this disorder stems from reports that mutations in α-synuclein or certain alleles of the major histocompatibility complex (MHC) are associated with the disease and that dopaminergic and norepinephrinergic neurons in the midbrain can present antigenic epitopes. Here, we discuss recent evidence that a defined set of peptides derived from α-synuclein act as antigenic epitopes displayed by specific MHC alleles and drive helper and cytotoxic T cell responses in patients with PD. Moreover, phosphorylated α-synuclein may activate T cell responses in a less restricted manner in PD.

View Article and Find Full Text PDF

Purpose: To determine the potential association between age-related macular degeneration (AMD), a representative chronic age-related degenerative disease of the retina associated with inflammation and aging, and susceptibility to SARS-CoV-2 infection and severe COVID-19 outcomes.

Design: Nationwide cohort study with propensity-score matching.

Methods: A population-based nationwide cohort in Korea was examined.

View Article and Find Full Text PDF

Cortical interneurons establish inhibitory microcircuits throughout the neocortex and their dysfunction has been implicated in epilepsy and neuropsychiatric diseases. Developmentally, interneurons migrate from a distal progenitor domain in order to populate the neocortex - a process that occurs at a slower rate in humans than in mice. In this study, we sought to identify factors that regulate the rate of interneuron maturation across the two species.

View Article and Find Full Text PDF

Many patients with SARS-CoV-2 infection develop neurological signs and symptoms; although, to date, little evidence exists that primary infection of the brain is a significant contributing factor. We present the clinical, neuropathological and molecular findings of 41 consecutive patients with SARS-CoV-2 infections who died and underwent autopsy in our medical centre. The mean age was 74 years (38-97 years), 27 patients (66%) were male and 34 (83%) were of Hispanic/Latinx ethnicity.

View Article and Find Full Text PDF

Cells derived from pluripotent sources in vitro must resemble those found in vivo as closely as possible at both transcriptional and functional levels in order to be a useful tool for studying diseases and developing therapeutics. Recently, differentiation of human pluripotent stem cells (hPSCs) into brain microvascular endothelial cells (ECs) with blood-brain barrier (BBB)-like properties has been reported. These cells have since been used as a robust in vitro BBB model for drug delivery and mechanistic understanding of neurological diseases.

View Article and Find Full Text PDF

The role of astrocytes in dysregulation of blood-brain barrier (BBB) function following ischemic stroke is not well understood. Here, we investigate the effects of restoring the repair properties of astrocytes on the BBB after ischemic stroke. Mice deficient for NHE1, a pH-sensitive Na/H exchanger 1, in astrocytes have reduced BBB permeability after ischemic stroke, increased angiogenesis and cerebral blood flow perfusion, in contrast to wild-type mice.

View Article and Find Full Text PDF

Central nervous system (CNS) blood vessels contain a functional blood-brain barrier (BBB) that is necessary for neuronal survival and activity. Although Wnt/β-catenin signaling is essential for BBB development, its downstream targets within the neurovasculature remain poorly understood. To identify targets of Wnt/β-catenin signaling underlying BBB maturation, we performed a microarray analysis that identified Fgfbp1 as a novel Wnt/β-catenin-regulated gene in mouse brain endothelial cells (mBECs).

View Article and Find Full Text PDF