Publications by authors named "Dominique Berteaux"

The probability of encountering conspecifics shapes animal behaviour, particularly for territorial individuals which often increase vigilance and scent marking when approaching home range boundaries. However, whether the foraging behaviours of territorial predators also vary with the probability of encountering neighbouring territory owners is poorly understood. We monitored 23 Arctic foxes occupying neighbouring home ranges during 2 years of contrasting resource availability on Bylot Island, Nunavut, Canada.

View Article and Find Full Text PDF

Seasonally abundant arthropods are a crucial food source for many migratory birds that breed in the Arctic. In cold environments, the growth and emergence of arthropods are particularly tied to temperature. Thus, the phenology of arthropods is anticipated to undergo a rapid change in response to a warming climate, potentially leading to a trophic mismatch between migratory insectivorous birds and their prey.

View Article and Find Full Text PDF

Habitat selection theory suggests that environmental features selected at coarse scales reveal fundamental factors affecting animal fitness. When these factors vary across seasons, they may lead to large-scale movements, including long-distance seasonal migrations. We analyzed the seasonal habitat selection of 25 satellite-tracked Arctic hares from a population on Ellesmere Island (Nunavut, Canada) that relocated over 100 km in the fall.

View Article and Find Full Text PDF

Indirect interactions are widespread among prey species that share a common predator, but the underlying mechanisms driving these interactions are often unclear, and our ability to predict their outcome is limited. Changes in behavioural traits that impact predator space use could be a key proximal mechanism mediating indirect interactions, but there is little empirical evidence of the causes and consequences of such behavioural-numerical response in multispecies systems. Here, we investigate the complex ecological relationships between seven prey species sharing a common predator.

View Article and Find Full Text PDF

The strength of indirect biotic interactions is difficult to quantify in the wild and can alter community composition. To investigate whether the presence of a prey species affects the population growth rate of another prey species, we quantified predator-mediated interaction strength using a multi-prey mechanistic model of predation and a population matrix model. Models were parametrized using behavioural, demographic and experimental data from a vertebrate community that includes the arctic fox (), a predator feeding on lemmings and eggs of various species such as sandpipers and geese.

View Article and Find Full Text PDF

Several species of passerines leave their nest with unfinished feather growth, resulting in lower feather insulation and increased thermoregulatory demands compared to adults. However, feather insulation is essential for avian species breeding at northern latitudes, where cold conditions or even snowstorms can occur during the breeding season. In altricial arctic species, increased heat loss caused by poor feather insulation during growth could be counter-adaptative as it creates additional energy demands for thermoregulation.

View Article and Find Full Text PDF

Long-distance dispersal plays a key role in species distribution and persistence. However, its movement metrics and ecological implications may differ whether it is undertaken by juveniles (natal dispersal) or adults (breeding dispersal). We investigated the influence of life stage on long-distance dispersal in the Arctic fox, an important tundra predator.

View Article and Find Full Text PDF
Article Synopsis
  • Rising global temperatures are making it harder for wildlife, especially Arctic birds like the snow bunting, to reproduce because they need to cool down more to stay active.
  • Researchers figured out a specific temperature (11.7°C) where these birds start having trouble providing food to their young.
  • Birds in warmer, lower Arctic areas often experience temperatures above this limit, while those in higher Arctic areas may face multiple hot days in a row, leading to challenges in raising their young.
View Article and Find Full Text PDF
Article Synopsis
  • Predator interactions in ecosystems often create positive indirect effects on prey species, but new research shows that these effects are not always solely due to prey handling processes.
  • The study extends the Holling disk equation by incorporating density-dependent changes in predator foraging behavior, particularly focusing on arctic tundra where arctic foxes prey on lemmings and bird eggs.
  • Findings suggest that changes in the fox’s daily activities and travel distances, rather than prey handling, primarily drive the positive effects on bird populations during lemming peaks.
View Article and Find Full Text PDF

Animal migration contributes largely to the seasonal dynamics of High Arctic ecosystems, linking distant habitats and impacting ecosystem structure and function. In polar deserts, Arctic hares are abundant herbivores and important components of food webs. Their annual migrations have long been suspected, but never confirmed.

View Article and Find Full Text PDF
Article Synopsis
  • Biologging technology enhances our understanding of animal behavior by using GPS and accelerometers to track movements, particularly in large predators, but small predators' behaviors remain challenging to monitor.
  • Researchers studied 16 Arctic foxes in Nunavut using this technology to classify their behaviors (motionless, running, walking, digging) and correlate these with the nesting patterns of greater snow geese.
  • The analysis revealed that a machine learning model was highly accurate in classifying behaviors, with significant time spent in different activities, and found a clear link between fox digging behavior and goose nest density, highlighting ecological interactions.
View Article and Find Full Text PDF

An animal's movement rate is a central metric of movement ecology as it correlates with its energy acquisition and expenditure. Obtaining accurate estimates of movement rate is challenging, especially in small highly mobile species where GPS battery size limits fix frequency, and geolocation technology limits positions' precision. In this study, we used high GPS fix frequencies to evaluate movement rates in eight territorial arctic foxes on Bylot Island (Nunavut, Canada) in July-August 2018.

View Article and Find Full Text PDF

Background: Movements and habitat selection of predators shape ecological communities by determining the spatiotemporal distribution of predation risk. Although intraspecific interactions associated to territoriality and parental care are involved in predator habitat selection, few studies have addressed their effects simultaneously with those of prey and habitat distribution. Moreover, individuals require behavioural and temporal flexibility in their movement decisions to meet various motivations in a heterogeneous environment.

View Article and Find Full Text PDF

Arctic animals inhabit some of the coldest environments on the planet and have evolved physiological mechanisms for minimizing heat loss under extreme cold. However, the Arctic is warming faster than the global average and how well Arctic animals tolerate even moderately high air temperatures ( ) is unknown.Using flow-through respirometry, we investigated the heat tolerance and evaporative cooling capacity of snow buntings (; ≈31 g,  = 42), a cold specialist, Arctic songbird.

View Article and Find Full Text PDF
Article Synopsis
  • * The Arctic Animal Movement Archive (AAMA) is a new resource that compiles over 200 animal tracking studies from 1991 to now, making it easier to access and analyze this data.
  • * Through AAMA, researchers are studying how climate change affects animal behaviors, including eagle migration timing, caribou reproduction patterns, and movement rates of terrestrial mammals.
View Article and Find Full Text PDF

Models incorporating seasonality are necessary to fully assess the impact of global warming on Arctic communities. Seasonal migrations are a key component of Arctic food webs that still elude current theories predicting a single community equilibrium. We develop a multi-season model of predator-prey dynamics using a hybrid dynamical systems framework applied to a simplified tundra food web (lemming-fox-goose-owl).

View Article and Find Full Text PDF

As top or mesopredators, carnivores play a key role in food webs. Their survival and reproduction are usually thought to be influenced by prey availability. However, simultaneous monitoring of prey and predators is difficult, making it challenging to evaluate the impacts of prey on carnivores' demography.

View Article and Find Full Text PDF

Ancient DNA provides a powerful means to investigate the timing, rate and extent of population declines caused by extrinsic factors, such as past climate change and human activities. One species probably affected by both these factors is the arctic fox, which had a large distribution during the last glaciation that subsequently contracted at the start of the Holocene. More recently, the arctic fox population in Scandinavia went through a demographic bottleneck owing to human persecution.

View Article and Find Full Text PDF

Climate change can impact ecosystems by reshaping the dynamics of resource exploitation for predators and their prey. Alterations of these pathways could be especially intense in ecosystems characterized by a simple trophic structure and rapid warming trends, such as in the Arctic. However, quantifying the multiple direct and indirect pathways through which climate change is likely to alter trophic interactions and their relative strength remains a challenge.

View Article and Find Full Text PDF

The poleward range shift of the red fox (Vulpes vulpes) > 1,700 km into the Arctic is one of the most remarkable distribution changes of the early twentieth century. While this expansion threatens a smaller arctic ecological equivalent, the arctic fox (Vulpes lagopus), the case became a textbook example of climate-driven range shifts. We tested this classical climate change hypothesis linked to an important range shift which has attracted little research thus far.

View Article and Find Full Text PDF

For effective monitoring in social-ecological systems to meet needs for biodiversity, science, and humans, desired outcomes must be clearly defined and routes from direct to derived outcomes understood. The Arctic is undergoing rapid climatic, ecological, social, and economic changes and requires effective wildlife monitoring to meet diverse stakeholder needs. To identify stakeholder priorities concerning desired outcomes of arctic wildlife monitoring, we conducted in-depth interviews with 29 arctic scientists, policy and decision makers, and representatives of indigenous organizations and nongovernmental organizations.

View Article and Find Full Text PDF

Predicting species distributions requires substantial numbers of georeferenced occurrences and access to remotely sensed climate and land cover data. Reliable estimates of the distribution of most species are unavailable, either because digitized georeferenced distributional data are rare or not digitized. The emergence of online biodiversity information databases and citizen science platforms dramatically improves the amount of information available to establish current and historical distribution of lesser-documented species.

View Article and Find Full Text PDF

Rationale: Stable isotope analysis is widely used to reconstruct diet, delineate trophic interactions, and determine energy pathways. Such ecological inferences are based on the idea that animals are, isotopically, what they eat but with a predictable difference between the isotopic ratio of a consumer and that of its diet, coined as the discrimination factor. Providing correct estimates of diet-consumer isotopic discrimination in controlled conditions is key for a robust application of the stable isotopes technique in the wild.

View Article and Find Full Text PDF

Indirect impacts of climate change, mediated by new species interactions (including pathogens or parasites) will likely be key drivers of biodiversity reorganization. In addition, direct effects of extreme weather events remain understudied. Simultaneous investigation of the significance of ectoparasites on host populations and extreme weather events is lacking, especially in the Arctic.

View Article and Find Full Text PDF