A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Predator home range size mediates indirect interactions between prey species in an arctic vertebrate community. | LitMetric

Predator home range size mediates indirect interactions between prey species in an arctic vertebrate community.

J Anim Ecol

Chaire de Recherche du Canada en Biodiversité Nordique, Centre d'Études Nordiques, and Centre de la Science de la Biodiversité du Québec, Université du Québec à Rimouski, Rimouski, Quebec, Canada.

Published: December 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Indirect interactions are widespread among prey species that share a common predator, but the underlying mechanisms driving these interactions are often unclear, and our ability to predict their outcome is limited. Changes in behavioural traits that impact predator space use could be a key proximal mechanism mediating indirect interactions, but there is little empirical evidence of the causes and consequences of such behavioural-numerical response in multispecies systems. Here, we investigate the complex ecological relationships between seven prey species sharing a common predator. We used a path analysis approach on a comprehensive 9-year data set simultaneously tracking predator space use, prey densities and prey mortality rate on key species of a simplified Arctic food web. We show that high availability of a clumped and spatially predictable prey (goose eggs) leads to a twofold reduction in predator (arctic fox) home range size, which increases local predator density and strongly decreases nest survival of an incidental prey (American golden plover). On the contrary, a scattered cyclic prey with potentially lower spatial predictability (lemming) had a weaker effect on fox space use and an overall positive impact on the survival of incidental prey. These contrasting effects underline the importance of studying behavioural responses of predators in multiprey systems and to explicitly integrate behavioural-numerical responses in multispecies predator-prey models.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1365-2656.14017DOI Listing

Publication Analysis

Top Keywords

indirect interactions
12
prey species
12
prey
9
range size
8
common predator
8
predator space
8
survival incidental
8
incidental prey
8
predator
7
predator range
4

Similar Publications