Publications by authors named "Dmitry Oshchepkov"

The hypothalamus belongs to the central brain structure designed for the neuroendocrine regulation of many organismal functions, including the stress response, cardiovascular system, and blood pressure, and it is well known that the serotonergic hypothalamic system plays a significant role in these processes. Unfortunately, the genetic determination of serotonergic hypothalamic mechanisms has been little studied. The aim of this article is to describe the expression profile of the genes in the hypothalamic serotonergic synapses in hypertensive ISIAH rats in comparison with normotensive WAG rats in control conditions and under the influence of a single short-term restraint stress.

View Article and Find Full Text PDF

Ethylene is a gaseous plant hormone that controls a wide array of physiologically relevant processes, including plant responses to biotic and abiotic stress, and induces ripening in climacteric fruits. To monitor ethylene in plants, analytical methods, phenotypic assays, gene expression analysis, and transcriptional or translational reporters are typically employed. In the model plant Arabidopsis, two ethylene-sensitive synthetic transcriptional reporters have been described, and .

View Article and Find Full Text PDF

Primary open-angle glaucoma (POAG) is the most common form of glaucoma. This condition leads to optic nerve degeneration and eventually to blindness. Tobacco smoking, alcohol consumption, fast-food diets, obesity, heavy weight lifting, high-intensity physical exercises, and many other bad habits are lifestyle-related risk factors for POAG.

View Article and Find Full Text PDF

As areas of application of terahertz (THz) radiation expand in science and practice, evidence is accumulating that this type of radiation can affect not only biological molecules directly, but also cellular processes as a whole. In this study, the transcriptome in cells of the thermophilic bacterium was analyzed immediately after THz irradiation (0.23 W/cm, 130 μm, 15 min) and at 10 min after its completion.

View Article and Find Full Text PDF

Normotensive and hypertensive organisms respond differently to stress factors; however, the features of the central molecular genetic mechanisms underlying the reaction of the hypertensive organism to stress have not been fully established. In this study, we examined the transcriptome profiles of the hypothalamus of hypertensive ISIAH rats, modeling a stress-sensitive form of arterial hypertension, and normotensive WAG rats at rest and after exposure to a single short-term restraint stress. It was shown that oxidative phosphorylation is the most significantly enriched process among metabolic changes in the hypothalamus of rats of both strains when exposed to a single short-term restraint stress.

View Article and Find Full Text PDF

Targeting DNA repair pathways is an important strategy in anticancer therapy. However, the unrevealed interactions between different DNA repair systems may interfere with the desired therapeutic effect. Among DNA repair systems, BER and NHEJ protect genome integrity through the entire cell cycle.

View Article and Find Full Text PDF

Emotional stress is one of the health risk factors in the modern human lifestyle. Stress exposure can provoke the manifestation of various pathological conditions, one of which is a sharp increase in the blood pressure level. In the present study, we analyzed changes in the transcriptome profiles of the hypothalamus of hypertensive ISIAH and normotensive WAG rats exposed to a single short-term restraint stress (the rat was placed in a tight wire-mesh cage for 2 h).

View Article and Find Full Text PDF

The process of domestication, despite its short duration as it compared with the time scale of the natural evolutionary process, has caused rapid and substantial changes in the phenotype of domestic animal species. Nonetheless, the genetic mechanisms underlying these changes remain poorly understood. The present study deals with an analysis of the transcriptomes from four brain regions of gray rats (), serving as an experimental model object of domestication.

View Article and Find Full Text PDF

Hypertension is one of the most significant risk factors for many cardiovascular diseases. At different stages of hypertension development, various pathophysiological processes can play a key role in the manifestation of the hypertensive phenotype and of comorbid conditions. Accordingly, it is thought that when diagnosing and choosing a strategy for treating hypertension, it is necessary to take into account age, the stage of disorder development, comorbidities, and effects of emotional-psychosocial factors.

View Article and Find Full Text PDF

Atherosclerosis is a systemic disease in which focal lesions in arteries promote the build-up of lipoproteins and cholesterol they are transporting. The development of atheroma (atherogenesis) narrows blood vessels, reduces the blood supply and leads to cardiovascular diseases. According to the World Health Organization (WHO), cardiovascular diseases are the leading cause of death, which has been especially boosted since the COVID-19 pandemic.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how gene expressions linked to age-related diseases (ARDs) vary among different genders, ages, and disease types to improve personalized medicine approaches.
  • Researchers sequenced the transcriptome of two types of rats—tame and aggressive—to find behavior-related gene expressions and compared them to known ARD-linked genes.
  • The analysis revealed a significant correlation between the gene expressions related to behavior and ARD susceptibility, identifying a key molecular marker: an excess of Fcγ receptor IIb, which suppresses immune hyperactivation.
View Article and Find Full Text PDF
Article Synopsis
  • GAGA (GAF) is a transcription factor crucial for regulating gene expression during fly development, and its underexpression in mutants leads to significant germline cell death and reduced testis size.
  • Our RNA-seq analysis identified 2,437 differentially expressed genes in GAGA underexpressed testes, revealing downregulation of normal testis genes and an increase in stress-related genes.
  • The study concludes that GAGA deficiency causes metabolic imbalances and impaired mitochondrial function, contributing to cellular stress and sperm cell death, but no specific GAGA-dependent cell death pathway was identified.
View Article and Find Full Text PDF
Article Synopsis
  • Studies on the genetic basis of tame behavior during animal domestication highlight their relevance in both basic and applied research, especially in understanding behavior in domesticated species like gray rats.
  • Researchers used high-throughput RNA sequencing to compare gene expression in the midbrains of tame versus aggressive rats, identifying 42 differentially expressed genes associated with behavior, including three transcription factors (TFs) that play significant roles.
  • The expression of the TF gene Ascl3 in tame rats suggests a link to longer neurogenesis and neoteny, positioning ASCL3 as a key factor influencing behavioral changes during domestication.
View Article and Find Full Text PDF

(1) Background: The widespread application of ChIP-seq technology requires annotation of cis-regulatory modules through the search of co-occurred motifs. (2) Methods: We present the web server Motifs Co-Occurrence Tool (Web-MCOT) that for a single ChIP-seq dataset detects the composite elements (CEs) or overrepresented homo- and heterotypic pairs of motifs with spacers and overlaps, with any mutual orientations, uncovering various similarities to recognition models within pairs of motifs. The first (Anchor) motif in CEs respects the target transcription factor of the ChIP-seq experiment, while the second one (Partner) can be defined either by a user or a public library of Partner motifs being processed.

View Article and Find Full Text PDF
Article Synopsis
  • Hypertension often runs in families, but genetic research shows that known genetic factors only account for a small part of its heredity, prompting the need for more personalized treatment approaches.
  • The study aimed to identify universal genetic markers for hypertension by analyzing gene expression in the brains of rats with different stress levels, linking stress reaction to hypertension risk.
  • Findings revealed two potential biomarkers—β-protocadherins and hemoglobin—that are downregulated in hypertensive patients and could be used in broader hypertension management strategies.
View Article and Find Full Text PDF

In this study we demonstrated that exposure of Escherichia coli (E. coli) to terahertz (THz) radiation resulted in a change in the activities of the tdcABCDEFGR and matA-F genes (signs of cell aggregation), gene yjjQ (signs of suppression of cell motility), dicABCF, FtsZ, and minCDE genes (signs of suppression of cell division), sfmACDHF genes (signs of adhesin synthesis), yjbEFGH and gfcA genes (signs of cell envelope stabilization). Moreover, THz radiation induced E.

View Article and Find Full Text PDF

Belyaev's concept of destabilizing selection during domestication was a major achievement in the XX century. Its practical value has been realized in commercial colors of the domesticated fox that never occur in the wild and has been confirmed in a wide variety of pet breeds. Many human disease models involving animals allow to test drugs before human testing.

View Article and Find Full Text PDF
Article Synopsis
  • The study used a web service to analyze SNPs in 68 genes related to rheumatoid arthritis (RA), identifying candidate markers that either contribute to or alleviate RA symptoms.
  • Results suggested that both immunostimulatory and immunosuppressive genes are under natural selection, impacting RA risk levels in humans.
  • The authors hypothesize that the evolution of RA in humans resembles patterns seen in domesticated animals, as RNA-Seq data revealed significant differences in gene expression between domestic pets and their wild counterparts linked to RA conditions.
View Article and Find Full Text PDF

Earlier, after our bioinformatic analysis of single-nucleotide polymorphisms of TATA-binding protein-binding sites within gene promoters on the human Y chromosome, we suggested that human reproductive potential diminishes during self-domestication. Here, we implemented bioinformatics models of human diseases using animal in vivo genome-wide RNA-Seq data to compare the effect of co-directed changes in the expression of orthologous genes on human reproductive potential and during the divergence of domestic and wild animals from their nearest common ancestor (NCA). For example, serotonin receptor 3A () deficiency contributes to sudden death in pregnancy, consistently with underexpression in guinea pigs ( during their divergence from their NCA with cavy ().

View Article and Find Full Text PDF

Learning and memory are among higher-order cognitive functions that are based on numerous molecular processes including changes in the expression of genes. To identify genes associated with learning and memory formation, here, we used the RNA-seq (high-throughput mRNA sequencing) technology to compare hippocampal transcriptomes between mice with high and low Morris water maze (MWM) cognitive performance. We identified 88 differentially expressed genes (DEGs) and 24 differentially alternatively spliced transcripts between the high- and low-MWM-performance mice.

View Article and Find Full Text PDF

Background: In population ecology, the concept of reproductive potential denotes the most vital indicator of chances to produce and sustain a healthy descendant until his/her reproductive maturity under the best conditions. This concept links quality of life and longevity of an individual with disease susceptibilities encoded by his/her genome. Female reproductive potential has been investigated deeply, widely, and comprehensively in the past, but the male one has not received an equal amount of attention.

View Article and Find Full Text PDF

(1) Background: Transcription factors (TFs) are main regulators of eukaryotic gene expression. The cooperative binding to genomic DNA of at least two TFs is the widespread mechanism of transcription regulation. Cooperating TFs can be revealed through the analysis of co-occurrence of their motifs.

View Article and Find Full Text PDF

(1) Background: The World Health Organization (WHO) regards atherosclerosis-related myocardial infarction and stroke as the main causes of death in humans. Susceptibility to atherogenesis-associated diseases is caused by single-nucleotide polymorphisms (SNPs). (2) Methods: Using our previously developed public web-service SNP_TATA_Comparator, we estimated statistical significance of the SNP-caused alterations in TATA-binding protein (TBP) binding affinity for 70 bp proximal promoter regions of the human genes clinically associated with diseases syntonic or dystonic with atherogenesis.

View Article and Find Full Text PDF

Aggressiveness is a hereditary behavioral pattern that forms a social hierarchy and affects the individual social rank and accordingly quality and duration of life. Thus, genome-wide studies of human aggressiveness are important. Nonetheless, the aggressiveness-related genome-wide studies have been conducted on animals rather than humans.

View Article and Find Full Text PDF

Recognition of composite elements consisting of two transcription factor binding sites gets behind the studies of tissue-, stage- and condition-specific transcription. Genome-wide data on transcription factor binding generated with ChIP-seq method facilitate an identification of composite elements, but the existing bioinformatics tools either require ChIP-seq datasets for both partner transcription factors, or omit composite elements with motifs overlapping. Here we present an universal Motifs Co-Occurrence Tool (MCOT) that retrieves maximum information about overrepresented composite elements from a single ChIP-seq dataset.

View Article and Find Full Text PDF