Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Hypertension is one of the most significant risk factors for many cardiovascular diseases. At different stages of hypertension development, various pathophysiological processes can play a key role in the manifestation of the hypertensive phenotype and of comorbid conditions. Accordingly, it is thought that when diagnosing and choosing a strategy for treating hypertension, it is necessary to take into account age, the stage of disorder development, comorbidities, and effects of emotional-psychosocial factors. Nonetheless, such an approach to choosing a treatment strategy is hampered by incomplete knowledge about details of age-related associations between the numerous features that may contribute to the manifestation of the hypertensive phenotype. Here, we used two groups of male F(ISIAHxWAG) hybrids of different ages, obtained by crossing hypertensive ISIAH rats (simulating stress-sensitive arterial hypertension) and normotensive WAG rats. By principal component analysis, the relationships among 21 morphological, physiological, and behavioral traits were examined. It was shown that the development of stress-sensitive hypertension in ISIAH rats is accompanied not only by an age-dependent (FDR < 5%) persistent increase in basal blood pressure but also by a decrease in the response to stress and by an increase in anxiety. The plasma corticosterone concentration at rest and its increase during short-term restraint stress in a group of young rats did not have a straightforward relationship with the other analyzed traits. Nonetheless, in older animals, such associations were found. Thus, the study revealed age-dependent relationships between the key features that determine hypertension manifestation in ISIAH rats. Our results may be useful for designing therapeutic strategies against stress-sensitive hypertension, taking into account the patients' age.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10341565PMC
http://dx.doi.org/10.3390/ijms241310984DOI Listing

Publication Analysis

Top Keywords

isiah rats
16
stress-sensitive hypertension
12
hypertension
8
hypertension isiah
8
manifestation hypertensive
8
hypertensive phenotype
8
hypertension account
8
rats
6
age-dependent changes
4
changes relationships
4

Similar Publications

The hypothalamus belongs to the central brain structure designed for the neuroendocrine regulation of many organismal functions, including the stress response, cardiovascular system, and blood pressure, and it is well known that the serotonergic hypothalamic system plays a significant role in these processes. Unfortunately, the genetic determination of serotonergic hypothalamic mechanisms has been little studied. The aim of this article is to describe the expression profile of the genes in the hypothalamic serotonergic synapses in hypertensive ISIAH rats in comparison with normotensive WAG rats in control conditions and under the influence of a single short-term restraint stress.

View Article and Find Full Text PDF

Normotensive and hypertensive organisms respond differently to stress factors; however, the features of the central molecular genetic mechanisms underlying the reaction of the hypertensive organism to stress have not been fully established. In this study, we examined the transcriptome profiles of the hypothalamus of hypertensive ISIAH rats, modeling a stress-sensitive form of arterial hypertension, and normotensive WAG rats at rest and after exposure to a single short-term restraint stress. It was shown that oxidative phosphorylation is the most significantly enriched process among metabolic changes in the hypothalamus of rats of both strains when exposed to a single short-term restraint stress.

View Article and Find Full Text PDF

Urine metabolic profile in rats with arterial hypertension of different genesis.

Vavilovskii Zhurnal Genet Selektsii

June 2024

Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia.

The diversity of pathogenetic mechanisms underlying arterial hypertension leads to the necessity to devise a personalized approach to the diagnosis and treatment of the disease. Metabolomics is one of the promising methods for personalized medicine, as it provides a comprehensive understanding of the physiological processes occurring in the body. The metabolome is a set of low-molecular substances available for detection in a sample and representing intermediate and final products of cell metabolism.

View Article and Find Full Text PDF

Stress can play a significant role in arterial hypertension and many other complications of cardiovascular diseases. Considerable attention is paid to the study of the molecular mechanisms involved in the body response to stressful influences, but there are still many blank spots in understanding the details. ISIAH rats model the stress-sensitive form of arterial hypertension.

View Article and Find Full Text PDF

Emotional stress is one of the health risk factors in the modern human lifestyle. Stress exposure can provoke the manifestation of various pathological conditions, one of which is a sharp increase in the blood pressure level. In the present study, we analyzed changes in the transcriptome profiles of the hypothalamus of hypertensive ISIAH and normotensive WAG rats exposed to a single short-term restraint stress (the rat was placed in a tight wire-mesh cage for 2 h).

View Article and Find Full Text PDF