Publications by authors named "Dayi Deng"

The aim of the present study was to characterize the metabolomic signatures associated with colorectal polyps (CPs) in the gut. A metabolomics analysis was conducted on fecal samples collected from patients diagnosed with CPs as well as from healthy participants. A total of 60 participants were selected for analysis, including 30 patients diagnosed with CPs (CP group) and 30 healthy individuals serving as controls [healthy control (HC) group].

View Article and Find Full Text PDF

Colorectal polyps serve as the primary precursors for colorectal cancer. A close relationship has been observed between colorectal polyps and gut microbiota. However, the composition and role of the microbiome associated with tubular adenoma are not well understood.

View Article and Find Full Text PDF

Thermally activated peroxydisulfate In Situ Chemical Oxidation (TAP-ISCO) is often applied for the remediation of soil-sorbed hydrophobic organic contaminants (HOCs) and nonaqueous phase liquids (NAPLs), which act as long-term sources of groundwater contamination. TAP-ISCO benefits from improved desorption/dissolution of organic contaminants into the aqueous phase and efficient activation of peroxydisulfate at elevated temperatures, but the primary limitation of TAP-ISCO is the short lifetime of peroxydisulfate (therefore the availability of reactive radical species). To resolve this problem, coupling of peroxide stabilizers with TAP were tested.

View Article and Find Full Text PDF

Sulfidation of nanoscale zero-valent iron (nZVI) has been frequently applied to enhance its reactivity, selectivity, and electron utilization efficiency. However, sulfidation of nZVI is generally carried out in aqueous solution, and formation of passivated iron (hydro)oxide species on the surface of S-nZVI due to the reaction between nZVI and water is inevitable. To mitigate this issue, sulfidation of nZVI with hydrogen sulfide dissolved in absolute ethanol was developed.

View Article and Find Full Text PDF

Nowadays, traditional packaging films with weak activity or single function cannot satisfy the active packaging requirements. In this paper, novel multifunctional films (TNC/GSE/AgNPs) based on TEMPO-oxidized nano-cellulose (TNC), grape seed extract (GSE) and TNC immobilized silver nanoparticles (TNC@AgNPs) are reported. The results showed that transparent TNC/GSE/AgNPs films exhibited better mechanical properties, lower water vapor permeability and oxygen permeability compared to pure TNC films.

View Article and Find Full Text PDF

Tetanus is still a major cause of human deaths in several developing countries. In particular, the neonatal form remains a significant public health problem. According to the World Health Organization, administration of tetanus toxoid is recommended for neonatal tetanus patients.

View Article and Find Full Text PDF

Limited aqueous availability of hydrophobic organic contaminants and nonaqueous phase liquids in subsurface environment may seriously impair the effectiveness of traditional in situ chemical oxidation (ISCO). To tackle the issue, a combination of surfactants and thermally activated persulfate was proposed to enhance the aqueous availability and consequent oxidation of organic contaminants. The compatibility of eight representative nonionic, monovalent anionic, and divalent anionic surfactants with persulfate at various temperatures was first studied, to identify suitable surfactants that have high aqueous stability and low oxidant demands to couple with thermally activated persulfate.

View Article and Find Full Text PDF

The feasibility of ultrasound assisted, thermally activated persulfate for effective oxidation of twenty 2-6 ringed coal tar PAHs in a biphasic tar/water system and a triphasic tar/soil/water system were investigated and established. The results indicate that ultrasonic assistance, persulfate and elevated reaction temperature are all required to achieve effective oxidation of coal tar PAHs, while the heating needed can be provided by ultrasonic induced heating as well. Further kinetic analysis reveals that the oxidation of individual PAH in the biphasic tar/water system follows the first-order kinetics, and individual PAH oxidation rate is primary determined by the mass transfer coefficients, tar/water interfacial areas, the aqueous solubility of individual PAH and its concentration in coal tar.

View Article and Find Full Text PDF

The determination of hormone-binding sites in plants is essential in understanding the mechanisms behind hormone function. Salicylic acid (SA) is an important plant hormone that regulates responses to biotic and abiotic stresses. In order to label SA-binding sites in plant tissues, a quantum dots (QDs) probe functionalized with a SA moiety was successfully synthesized by coupling CdSe QDs capped with 3-mercaptopropionic acid (MPA) to 4-amino-2-hydroxybenzoic acid (PAS), using 1-ethyl-3-(3-dimethyllaminopropyl) carbodiimide (EDC) as the coupling agent.

View Article and Find Full Text PDF

The degradation of dimethyl phthalate (DMP) by persulfate at ambient temperature (T=20-40°C) was investigated in aqueous solutions and soil slurries to assess the feasibility of using persulfate to remediate DMP contaminated soil and groundwater. First, the effects of temperature, initial oxidant concentration, initial DMP concentration and initial solution pH on the removal of DMP and TOC were studied in aqueous solutions. The results show that persulfate at 40°C can effectively mineralize DMP.

View Article and Find Full Text PDF

To provide guidance on the selection of proper persulfate processes for the remediation of MTBE contaminated groundwater, MTBE aqueous solutions were treated with three common field persulfate processes including heat activated persulfate, Fe(III)-EDTA activated persulfate and alkaline persulfate, respectively. The results were compared with MTBE oxidation by Fenton's reagent and persulfate alone at 25°C. The impact of the activating conditions on the fate of MTBE and its daughter products was investigated.

View Article and Find Full Text PDF

Decolourization of the azo dye Orange G (OG) was investigated by using goethite/H2O2 as a heterogeneous Fenton-like reagent. Five principle operational parameters, namely pH, ion strength, concentrations ofgoethite (alpha-FeOOH) and hydrogen peroxide (H2O2), and reaction temperature, were taken into account to investigate how these controlling factors mediated OG decolourization. Goethite surfaces catalysed a Fenton-like reaction responsible for decolourizing OG following pseudo-first-order kinetics (R2 > 0.

View Article and Find Full Text PDF

Multiwalled carbon nanotubes functionalized by oxidation of original multiwalled carbon nanotubes with NaClO were prepared and their application as solid phase extraction sorbent for 2,4-dichlorophenoxyacetic acid (2,4-D) was investigated systemically, and a new method was developed for the determination of trace 2,4-D in water samples based on extraction and preconcentration of 2,4-D with solid phase extraction columns packed with NaClO-treated multiwalled carbon nanotubes prior to its determination by HPLC. The optimum experimental parameters for preconcentration of 2,4-D, including the column activating conditions, the amount of the sorbent, pH of the sample, elution composition, and elution volume, were investigated. The results indicated 2,4-D could be quantitatively retained by 100 mg NaClO-treated multiwalled carbon nanotubes at pH 5, and then eluted completely with 10 mL 3:1 (v/v) methanol-ammonium acetate solution (0.

View Article and Find Full Text PDF

Background: Chronic ulcer of the lower extremities amounts for a grave and serious problem for public health. Western medicine focuses on controlling infection, improving blood circulation, surgical debridement, skin grafting, etc, but there are bottlenecks in the treatment. Traditional Chinese medicine (TCM) has a long history and a legacy of sound clinical efficacy in this area.

View Article and Find Full Text PDF

A novel homoplastic podand fluorescent sensor based on flexible hydrophilic lysine was prepared. Lysine with two dansyl groups-appended at both ends supplied a possibility for a tridentate binding toward Hg(II) and finally resulted in a unique selectivity to Hg(II) over other transition-metal ions with a hypersensitivity (detection limit 2.0 nM) in neutral buffered aqueous solutions.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigated how phoxim degrades in river water, focusing on factors like pH, temperature, and ultraviolet (UV) light, finding that these conditions speed up the degradation process.
  • Researchers used HPLC-MS/MS to identify five degradation intermediates, revealing a complex degradation pathway with various chemical transformations occurring.
  • Understanding the degradation mechanism is crucial for assessing the environmental safety of phoxim and for predicting its behavior in water systems.
View Article and Find Full Text PDF

Three structurally analogous radical clock substrates with a 100-fold span in their rearrangement rates are hydroxylated by the diiron oxygenase AlkB to afford similar amounts of rearranged and unrearranged products. Such a result is predicted by a mechanistic scheme by which radical rebound competes with cage escape of the geminate substrate radical. The results show that radical clocks can measure both the radical life-time and the kinetics of cage escape.

View Article and Find Full Text PDF

[Image: see text] Rieske dioxygenases catalyze the -dihydroxylation of a wide range of aromatic compounds to initiate their biodegradation. The archetypal Rieske dioxygenase naphthalene 1,2-dioxygenase (NDOS) catalyzes dioxygenation of naphthalene to form (+)--(1R,2S)-dihydroxy-1,2-dihydronaphthalene. NDOS is composed of three proteins: a reductase, a ferredoxin, and an αβ oxygenase (NDO).

View Article and Find Full Text PDF

Mechanistically informative chemical probes are used to characterize the activity of functional alkane hydroxylases in whole cells. Norcarane is a substrate used to reveal the lifetime of radical intermediates formed during alkane oxidation. Results from oxidations of this probe with organisms that contain the two most prevalent medium-chain-length alkane-oxidizing metalloenzymes, alkane omega-monooxygenase (AlkB) and cytochrome P450 (CYP), are reported.

View Article and Find Full Text PDF

The mass spectrometric fragmentation behaviour of five pairs of (R,R)- and (S,S)-4,5-bis(benzoxazol-2-yl)-2,2-dimethyl-1,3-dioxolane derivatives, one pair of (R,R)- and (S,S)-4,5-bis(benzothiazol-2-yl)-2,2-dimethyl-1,3-dioxolanes, and three pairs of (R,R)- and (S,S)-N,N'-bis(2-hydroxyaryl)-2,2-dimethyl-1,3-dioxolane-4,5-dicarbamides, all important compounds for asymmetric catalysis (P. Jiao et al., Tetrahedron Asymmetry 2001; 12: 3081), has been studied with the aid of mass-analyzed ion kinetic energy spectrometry and accurate mass measurements under electron impact ionization conditions.

View Article and Find Full Text PDF